

INSTITUTE ON THE ENVIRONMENT

UNIVERSITY OF MINNESOTA Driven to Discover"

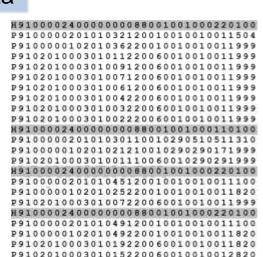
CPSR A PARTAGE IN SOCIAL ACHERE IN SOCIAL ACHERE IN SOCIAL RESEARCH

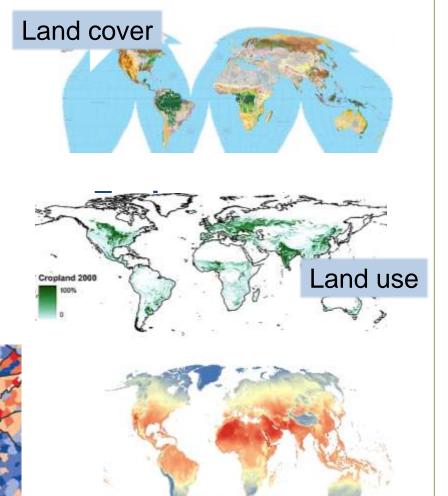
TerraPop Goals

Lower barriers to conducting interdisciplinary humanenvironment interactions research by making data with different formats from different scientific domains easily interoperable

Provide an organizational and technical framework to preserve, integrate, disseminate, and analyze globalscale spatiotemporal data describing population and the environment.

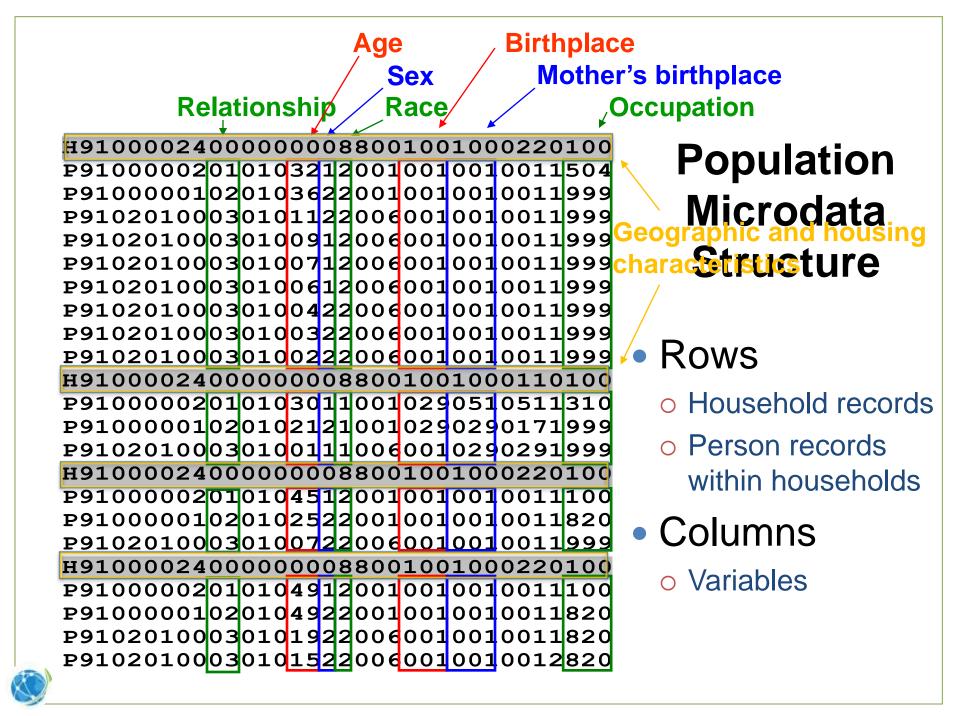
Source Data

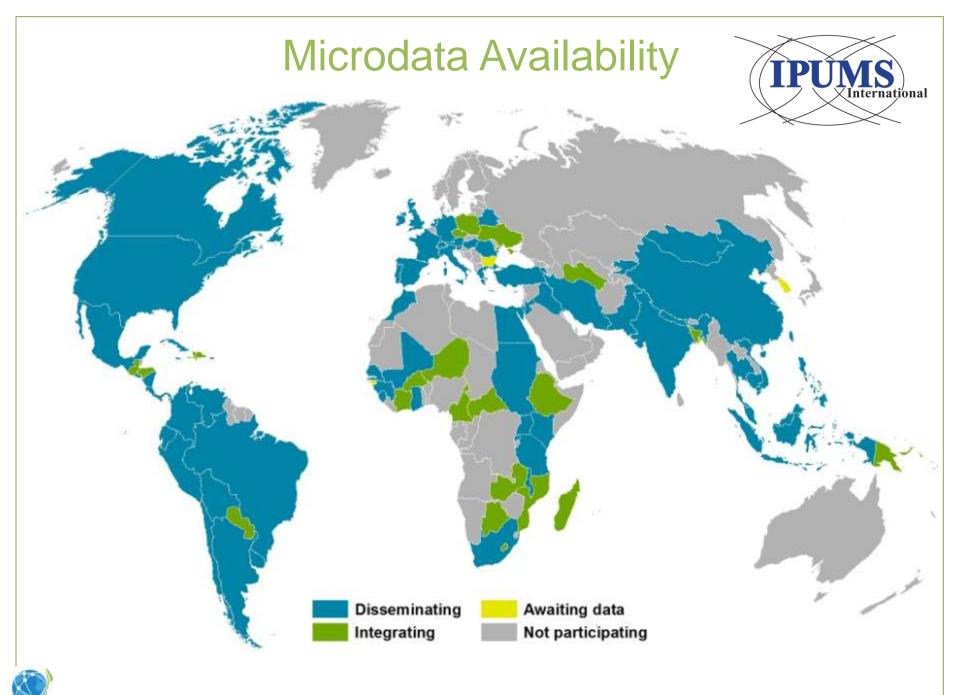



- DOMAINS & FORMATS
- POPULATION MICRODATA
- AREA-LEVEL DATA

Terra Populus Data Domains

Microdata



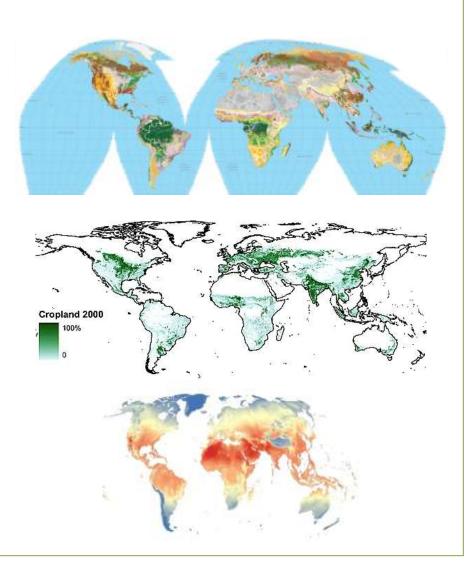


Climate

Areal Data

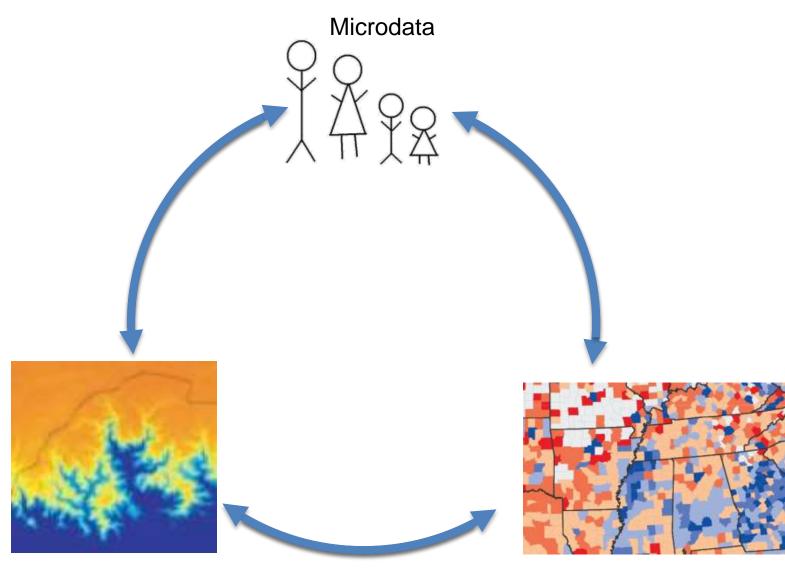
Area-level Data Sources

 Census tables, especially where microdata is unavailable

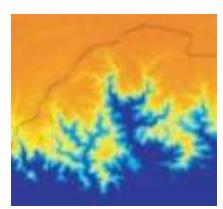

Other types of surveys, data

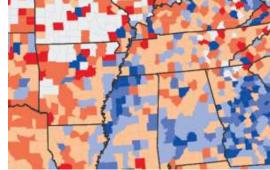
- Agricultural surveys
- o Economic surveys, data
- Election data
- Legal information

Environmental Data (Rasters) TerraPop Prototype


- Land cover data from satellite images (Global Land Cover 2000)
- Agricultural land use data from satellites and government records (Global Landscapes Initiative)
- Climate data from weather stations (*WorldClim*)

MICRODATA \Leftrightarrow AREA-LEVEL \Leftrightarrow RASTER

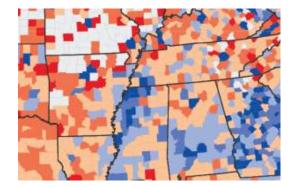


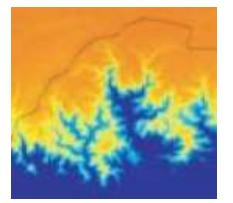


Rasters

Microdata Indi W								
AGE	SEX	LANDCOV	AVGTEMP					
10	Male	Forest	21.20					
27	Female	Forest	24.30					
54	Female	Pasture	24.10					
37	Male	Cropped	25.60					
37	Female	Cropped	28.10					
42	Female	Urban	26.70					
20	Female	Forest	24.30					
39	Male	Urban	26.80					
77	Female	Cropped	27.70					
11	Female	Cropped	22.30					
31	Female	Pasture	25.10	1				
23	Male	Forest	24.40					
24	Female	Urban	21.50					
40	Female	Urban	23.40	1				

ndividuals and households with their environmental and social context





Microdata

	Mean Ann.	Max. Ann.	Rent,	Rent,	Own,	Own,
County ID	Temp.	Precip.	Rural	Urban	Rural	Urban
G17003100001	21.2	768	3129	1063	637	365
G17003100002	23.4	589	2949	1075	1469	717
G17003100003	24.3	867	3418	1589	1108	617
G17003100004	21.5	943	1882	425	202	142
G17003100005	24.1	867	2416	572	426	197
G17003100006	24.4	697	2560	934	950	563
G17003100007	25.6	701	2126	653	321	215

Summarized environmental and population characteristics for administrative districts

Microdata **Rasters of** population and environment data

Rasters

Boundaries are Key

JORRBOTTEN

- Linkages across data formats rely on administrative unit boundaries
- Particular needs

Administrative Unit Boundary Processing

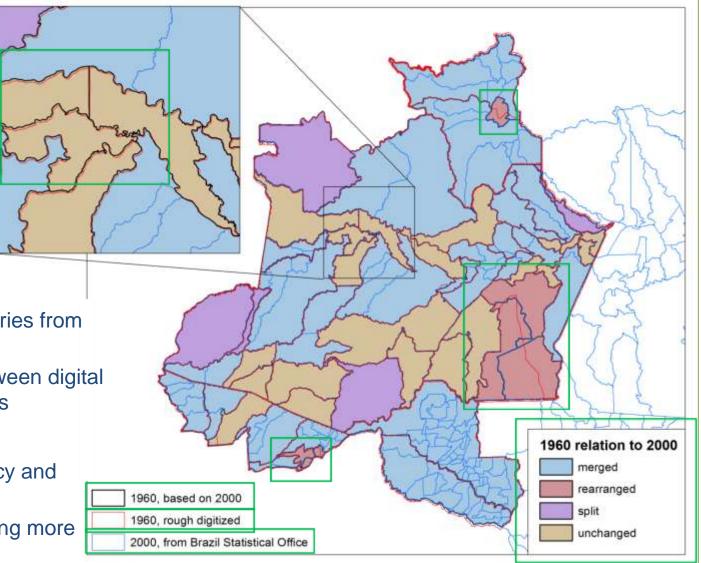
- OBTAINING
- LINKING TO MICRODATA
- TEMPORAL HARMONIZATION
- REGIONALIZATION

Obtaining Boundary Data

Potential sources of digital data

- National Statistical Offices
- o Global Administrative Areas data (e.g. SALB, GAUL)
- Digitizing from images or paper maps

Challenges


- Lower level and historical data
- Date mismatches with census data
- Code matching to microdata

Digitizing Boundaries

Leveraging available digital data

- Script input
 - Existing digital data
 - Rough digitized boundaries
- Script output
 - Relevant boundaries from digital data
 - Relationship between digital and digitized units
- Advantages
 - Preserve accuracy and detail
 - Flag areas needing more work

Code Matching

 Codes link boundaries to microdata records, connect people to places

		С		
	Shape *		GEOCODIGO	NOME
Poundary	Polygon	Γ	1100015	Alta Floresta D'Oeste
Boundary	Polygon	Γ	1100023	Ariquemes
shape	Polygon		1100031	Cabixi
	Polygon		1100049	Cacoal
attributes	Polygon		1100056	Cerejeiras
	Polygon	Γ	1100064	Colorado do Oeste
	Polygon		1100072	Corumbiara
	Polygon		1100080	Costa Marques

MUNIBR2	PERNUM	WTPER	AGE	SEX	MARST	
1100049	2	18.40	96	2	4	
1100023	5	18.53	95	2	4	
1100023	3	24.12	94	1	2	
1100023	6	9.70	90	1	2	
1100049	3	26.57	88	2	4	
1100049	2	19.85	87	2	4	
1100049	2	21.59	86	1	3	
1100049	1	19.49	86	1	4	
1100023	7	9.70	85	2	2	
1100015	3	25.56	85	1	2	

IPUMS microdata

- Boundary data may or may not include codes
- Approach
 - Name matching, when possible
 - Map observations digitizing script captures codes
 - Research on boundary changes

Temporal Harmonization

Purpose

Create consistent units for time-series analysis

Top-down strategy

- Start with first administrative level units
- o Harmonize 2nd level units within 1st level "containers"

Script to create "least common denominator" units

- Applicable when maps from multiple years are available
- Creates aggregate units encompassing areas with boundary changes
- Constructs source-harmonized crosswalk

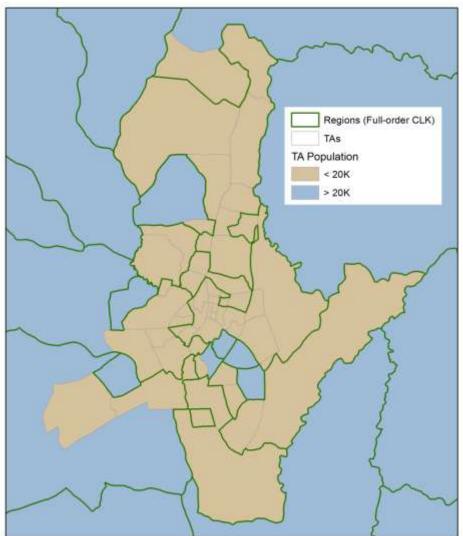
- "Erase" interior boundaries applicable to only one census
- Apply harmonized codes
- Also aids in code matching

Crosswalk

	Harmo	nized	1998		2008	
	10101	TA Mwabulambya	10101 TA Mwab	ulambya	10101	TA Mwabulambya
	31546	Bangwe Ward	30546 Bangwe V	Vard	31546	Bangwe Ward
	20407	Mponeia	20407 SC Mpone	eia	20407	SC Mponela
			20421 Mponela	Urban		
	20505	Ndindi and Chipoka Urban	20505 TA Ndindi		20505	TA Ndindi
			20521 Chipoka L	Jrban		
	31001	Ngabu	31001 TA Ngabu		31001	TA Ngabu
I			31021 Ngabu Urban			
	30902	Nazombe and Chiwalo	30902 TA Nazombe		30902	TA Nazombe
					30903	TA Chiwalo
	31304	Ngozi and Neno Boma	30606 TA Ngozi		31304	TA Ngozi
					31320	Neno Boma
-						

Regionalization

 Confidentiality concerns require minimum 20,000 population in each unit disseminated


REDCAP tool

- Constructs regions by combining units
- Regions meet minimum population threshold
- Contiguity constrained
- o Combines units that are similar in terms of a selected variable
- Currently in testing phase
 - REDCAP Algorithms and parameters
 - o Optimization variables (e.g., pop. density, education, occupation)
 - o Testing on Malawi TAs, Brazil 2000 municipios

Regionalization - Lilongwe, Malawi

- Units < 20K combined with neighbors to meet threshold
- Specific aggregation depends on
 - Optimization variable
 - Algorithm

Beyond Administrative Boundaries

- ARBITRARY BOUNDARIES
- RASTERIZATION

Arbitrary Boundaries

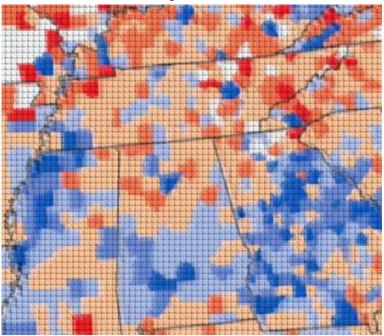
• Watersheds, buffers around features, etc.

Near-term

- Summarize rasters to user-supplied boundaries
- Identify administrative units intersecting usersupplied boundaries

Future

- Reallocation based on uniform distribution assumption
- Reallocation based on other assumptions


Rasterization

Prototype - All cells in unit get the same value

- Use lowest level units available
- o Rates only, not counts

Future – Distribute based on ancillary data

- Requires research on available methods
- May provide as service users select:
 - × Ancillary data
 - Weights
 - Spatial distribution parameters

