EUROPEAN FORUM FOR GEOSTATISTICS 2012

Prague Conference

24-26 October 2012 Prague, Czech Republic

Detailed population

distribution maps

for Europe's cities

Filipe Batista e Silva

EC, Joint Research Centre, Ispra, Italy

Hugo Poelman

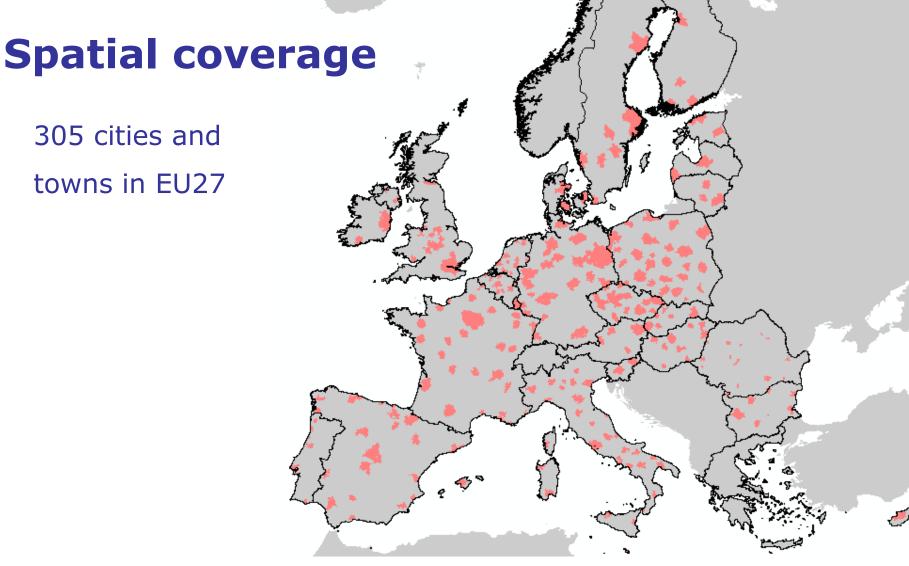
EC, DG Regio, Brussels, Belgium

Structure of the presentation

- Objective and scope of the work
- Data used
- Methodology
- Results and validation
- Summing up and conclusions

Objective and scope of the work

The main objective of the work was to


Leverage existing European spatial and statistical datasets in order to obtain <u>detailed depictions and</u> <u>quantifications of the population distribution</u> for major European cities.

→ Joint effort of DG Regio and DG Joint Research Centre
 (European Commission) to support urban and regional policy and analysis.

6 November 2012

In areal interpolation problems, there are

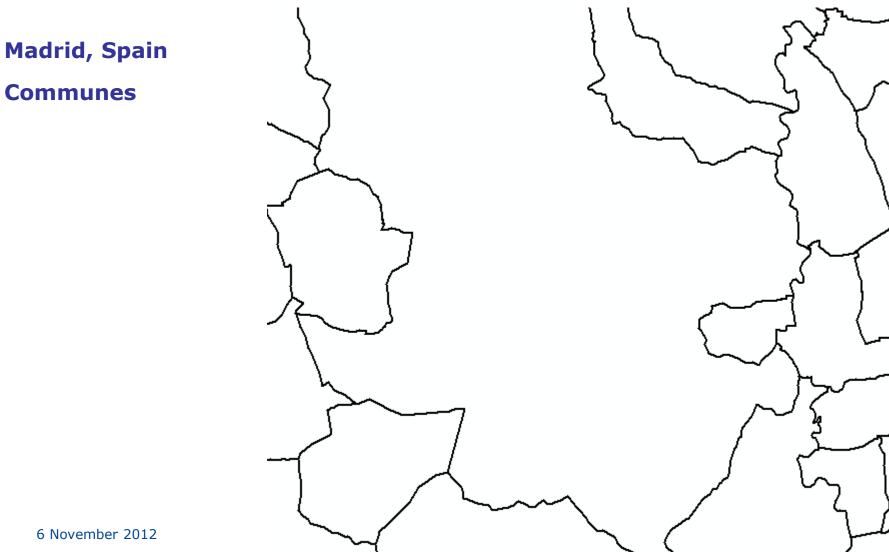
usually three types of data involved:

- 1. Source data
- 2. Target zones
- 3. Ancillary data

Source data

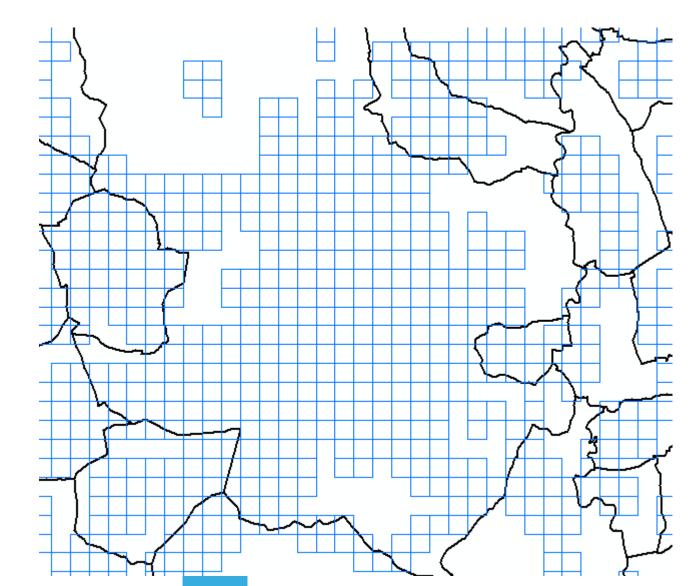
Definition:

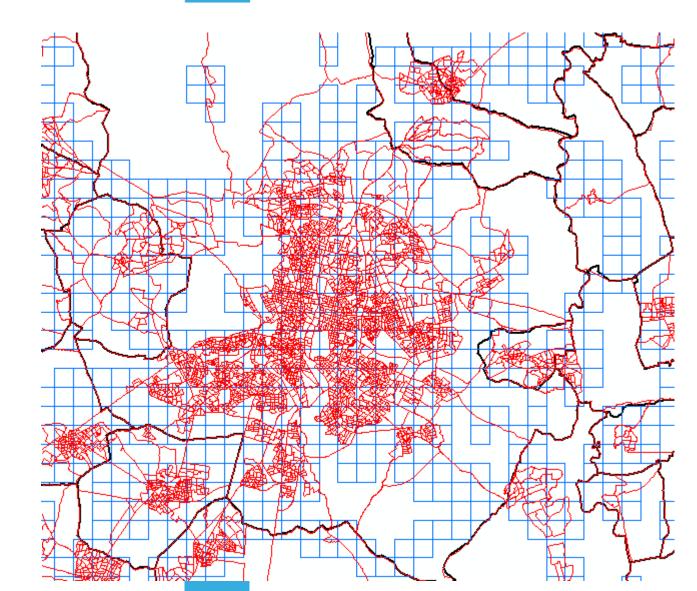
Population counts at a given enumeration zoning system.


Data used in this project:

Population reported at <u>bottom-up grids</u> (1 Km or finer), <u>census tracts</u> or <u>communes</u> for *circa* 2006.

For each town/city, the most detailed available source was used.





6 November 2012

Madrid, Spain

6 November 2012

Target zones

Definition:

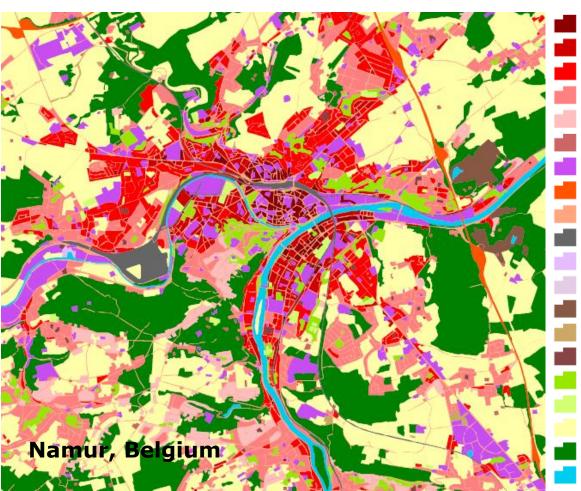
The set of geographical entities for which population needs to be estimated.

Data used in this project:

Land use/cover polygons of the Urban Atlas dataset.

Urban Atlas (main facts)

- Pan-European detailed and comparable land use/cover maps;
- Produced in the context of the European Programme for Global Monitoring for Environment and Security (GMES);
- Freely available (through EEA);
- <u>Spatial coverage</u>: 305 cities and towns across EU27;
- <u>Temporal coverage</u>: 2006 +/- 1 year;



- **Urban Atlas (main facts)**
- <u>Spatial resolution (minimum mapping unit)</u>:
 - 0,25 hectares for artificial surfaces
 - 1 hectare for non artificial surfaces
- <u>Thematic resolution</u>: 20 land use/cover classes, with focus on artificial surfaces;
- <u>Main data sources</u>: Earth Observation (satellite imagery), road network, local topographic maps, local expertise.

Urban Atlas

11100: Continuous Urban fabric (S.L. > 80%) 11210: Discontinuous Dense Urban Fabric (S.L.: 50% - 80%) 11220: Discontinuous Medium Density Urban Fabric (S.L.: 30% - 50%) 11230: Discontinuous Low Density Urban Fabric (S.L.: 10% - 30%) 11240: Discontinuous very low density urban fabric (S.L. < 10%) 11300: Isolated Structures 12100: Industrial, commercial, public, military and private units 12210: Fast transit roads and associated land 12220: Other roads and associated land 12230: Railways and associated land 12300: Port areas 12400: Airports 13100: Mineral extraction and dump sites 13300: Construction sites 13400: Land without current use 14100: Green urban areas 14200: Sports and leisure facilities 20000: Agricultural, semi-natural and wetland areas 30000: Forest

50000: Water

Ancillary data

Definition:

Any kind of spatially explicit data that informs the population disaggregation process. It should be a proxy for population distribution.

Data used in this project:

Degree of soil sealing (wall to wall European dataset) (corrected version of 20 meter resolution).

Data used (summary)

Data category		Description	Reference year	Coverage
Source		Type 1: High resolution bottom- up grids (<1km)		Denmark; Finland; Sweden; Slovenia.
	Residential population	Type 2: Census tracts	2006 +/- 1	Belgium; England and Wales; Netherlands, Spain*.
		Type 3: Medium resolution bottom-up or hybrid grids (1km)		Austria; France; Portugal.
		Type 4: Commune boundaries		Remaining EU-27 countries.
Target	-	polygons (only the polygons be populated)	2006 +/- 1	All EU-27
Ancillary	•	Layer (adjusted version used for the f the Urban Atlas)	2006	All EU-27

* For the Larger Urban Zone of Madrid, bottom-up population data (residential registry points) were aggregated to the Urban Atlas polygons. For the Larger Urban Zone of Seville, a hybrid 1 km grid was used as source data for the disaggregation.

Areal interpolation with densities proportional to the soil sealing degree.

Preparatory steps:

- 1. Classify the Urban Atlas land use/cover classes into:
 - a) Inhabited;
 - b) Not inhabited.

Preparatory steps (cont.):

- 2. Develop a weighting system representative of the population density for the inhabited classes:
 - a) Weights directly derived from the soil sealing degree: for land use/cover classes where the soil sealing degree is assumed to be <u>correlated</u> with population density.
 - b) Ad-hoc weights for the land use/cover classes where the soil sealing degree and population density are assumed to be <u>uncorrelated</u> with population density.

Weighting scheme

Urban Atlas class		Weight		
	Description (from the Urban Atlas Mapping Guide)	Method	Value*	
11100	Continuous urban fabric (S.L. > 80%)	n gu	80-100	
11210	Discontinuous dense urban fabric (S.L. 50% - 80%)	derived from ge soil sealing of polygons	50-80	
11220	Discontinuous medium density urban fabric (S.L. 30 - 50%)	rivec soil poly	30-50	
11230	Discontinuous low density urban fabric (S.L. 10% - 30%)	ly de rage e of	10-30	
11240	Discontinuous very low density urban fabric (S.L. < 10%)	Directly de the average degree of	4-9**	
11300	Isolated structures	Di	4-9***	

Weighting scheme

Urban Atlas class		Weight			
	Description (from the Urban Atlas Mapping Guide)	Method	Value*		
12100	Industrial, commercial, public military and private units	Å	1		
12210	Fast transit roads and associated land	arbitrarily	0		
12220	Other roads and associated land	arbit	0		
12230	Railways and associated land	uted	0		
12300	Port areas	Attributed	0.1		
12400	Airports		0		

Weighting scheme

Urban Atlas class		We	Weight			
	Description (from the Urban Atlas Mapping Guide)	Method	Value*			
13100	Mineral extraction and dump sites		0			
13300	Construction sites	Attributed arbitrarily	0			
13400	Land without current use		0			
14100	Green urban areas		0			
14200	Sports and leisure facilities		1			
20000	Agricultural areas, semi-natural areas and wetlands		0.1			
30000	Forests		0			
50000	Water		0			

Notes:

* Indicative thresholds. Miner differences in the actual weights attributed may vary in individual polygons. See footnote 3.

** The lower threshold for the class 11240 was obtained through empirical analysis of observed sealing values.

*** For the class 11300 it was assumed a population weight equal to the one used for the class 11240. The only difference is that the polygons of this class are not contiguous to other urban fabric polygons.

Areal interpolation with densities proportional to the soil sealing degree.

Main steps:

- Source and target zones (vector) are geometrically intersected through a GIS operation.
 - \rightarrow A 'transitional' geometry is obtained.

Main steps (cont.):

 Estimate the population for each polygon of the 'transitional' geometry.

$$P_i^{'} = P_s \cdot \left(\frac{A_i \cdot W_i}{\sum_i^n A_i \cdot W_i}\right)$$

 P_i^{\prime} corresponds to estimated population of a given polygon *i* of the transitional geometry;

 P_s is the known population in the source zone s;

 A_i is the area of polygon *i*;

 W_i is the weight assigned to polygon *i*, corresponding to the average soil sealing value;

n corresponds to the number of transitional polygons within each source polygon.

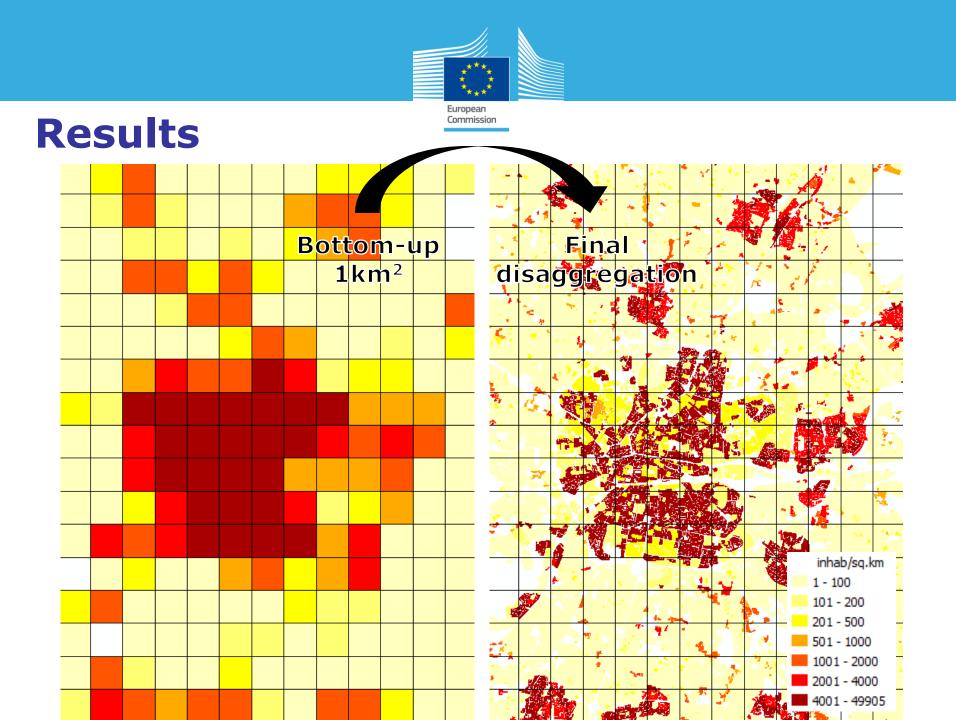
Main steps (cont.):

3. Aggregate the estimates at the level of the target geometry (the Urban Atlas polygons).

$$P_t^{'} = \sum_i^j P_i^{'}$$

t denotes the target geometry (each Urban Atlas polygon)

j corresponds to the number of transitional polygons within each target polygon


created.

Automation of the process

A script written in Python programming language, and accessible as a tool within the ArcGIS environment was

Sownscalling population into UA polygons		
Set Workspace		Downscalling
J o Input UA shapefile		population into UA polygons
 Input reference population grid 		The script transfers
		population data from any given vector source to
Reference population field	-	Urban Atlas polygons. Population density weights
Input Soil Sealing Layer		are derived from the soil
l Input country boundary (optional)		sealing layer (20m resolution).
	_	
OK Cancel Environments	<< Hide Help	Tool Help

Validation

Applied to a limited number of countries / regions:

• Austria, Finland, Portugal, Madrid.

The validation consisted of comparing the **estimated** against **known** number of residents for each Urban Atlas polygon.

The **known** number of residents for each polygon was obtained by aggregating point-data counts \rightarrow **ground truth data!** (work done in collaboration with the Austrian, Finish and Portuguese Statistical Offices and with the University of Valencia, Spain)

Validation

Accuracy indicator: Total Absolute Error (TAE)

Measures the overall disagreement observed in a given study area by summing the absolute deviations between known and estimated values for all target zones:

 $TAE = \Sigma_t |P'_t - P_t|$

By definition, TAE varies within the range $[0, 2*P_{study area}]$.

RTAE = TAE / P_{study_area} , $\in [0, 2]$ (RTAE is easier to read)

Validation

if RTAE = 0

Perfect disaggregation. The population estimated for all target zones (Urban Atlas polygons) matches perfectly with ground truth data.

if RTAE = 2

Completely wrong disaggregation.

Validation (results)

	UATL City Source data		ce data	RTAE	
Country	Code	Name	Туре	Median unit size (sq. Km)	[0-2]
	FI001	Helsinki			0,230
Finland	F1004	Oulu	Bottom-up	0,25	0,260
imanu	F1002	Tampere	Bottom-up	0,25	0,290
	F1003	Turku			0,270
	AT001	Wien			0,442
	AT002	Graz			0,530
Austria	AT003	Linz	Bottom-up	1,00	0,554
	AT004	Salzburg			0,516
	AT005	Innsbruck			0,437
	PT001	Lisboa			0,501
	PT002	Porto			0,486
	PT003	Braga			0,506
	PT004	Funchal			0,522
Portugal	PT005	Coimbra Botto	Bottom-up 1,0	1,00	0,524
	PT006	Setubal			0,466
	PT007	Ponta Delgada			0,470
	PT008	Aveiro			0,469
	PT009	Faro			0,579

Validation (results)

UATL City			Sourc	e data	RTAE	_
Country	y Code Name Type		de Name Type Median unit size (sq. Km)		[0-2]	_
			Communes	33,49	0,703	35%
Spain	ES001	Madrid	Bottom-up	1,00	0,516	26%
			Census tracts	0,05	0,390	20%

Possible <u>logarithimic relationship</u> between detail of input source zones and accuracy.

Validation (results)

Land U	Land Use Class		stria	Finland		Portugal			
Code	Label	Absolute Error	% Error	Absolute Error	% Error	Absolute Error	% Error		
11100	Continuous Urban Fabric	47.484	4,7%	7.597	2,9%	- 111.635	-4,2%	٦	
11210	Discont. Dense Urban Fabric	5.177	0,4%	18.043	4,6%	237.074	18,4%		
11220	Discont. Medium Density Urban Fabric	116.785	14,4%	21.012	4,4%	88.644	26,1%	ļ	
11230	Discont. Low Density Urban Fabric	19.354	7,5%	8.369	1,7%	9.376	7,6%		Weights derived from SSL
11240	Discont. Very Low Density Urban Fabric	- 6.023	-39,6%	- 27.126	-11,0%	- 6.188	-39,1%		
11300	Isolated Structures	- 27.676	-48,3%	4.303	7,6%	- 19.398	-53,8%	J	
12100	Industrial, commercial, public	- 141.065	-83,4%	- 35.612	-49,8%	- 121.755	-81,6%	٦	
12300	Portareas	- 135	-61,0%	- 104	-51,8%	- 53	-32,9%	ļ	Ad-hoc weights
14200	Sports and leisure facilities	- 8.766	-53,7%	2.887	229,3%	- 1.815	-29,5%		Au-noc weights
20000	Agric. + Semi-nat. + Wetlands	154	0,6%	3.020	33,6%	- 42.627	-67,3%	J	
12400	Airports	- 124	-100,0%	- 37	-100,0%	- 46	-100,0%	٦	
13300	Construction sites	- 4.215	-100,0%	- 1.741	-100,0%	- 26.343	-100,0%	ł	No pop. assigned
13400	Land without current use	- 951	-100,0%	- 257	-100,0%	- 5.234	-100,0%	J	

Joint Research Centre

Summing up and conclusions

- Collaborative work between institutions of the European Commission, including the active involvement of a number of National Statistical Offices;
- Final outcome: detailed population estimates at the level of the Urban Atlas land use/cover polygons. Available for any analysis that might benefit from these small-area estimates.

Summing up and conclusions

- 3. Regarding the validation:
 - Validation done by comparing estimates with ground-truth data. Uncertainties of the estimates are reasonably known;
 - Reliability of the product varies across countries, mainly due to input source data of different resolutions: from high resolution bottom-up grids (< 1 km²) to large commune boundaries.
 - Some frailties are a consequence of the proxy used for population density (soil sealing degree) and from the

6 November Weighting scheme.

Summing up and conclusions

- 4. Future developments:
 - Some of the detected weaknesses of the product can be addressed mainly by fine-tuning the weighting scheme;
 - The workflow is fully operational to produce new estimates as soon as new, updated or more detailed data are available;
 - The soil sealing degree <u>alone</u> is not the optimal proxy for population density. It does not capture the vertical dimension of the population distribution. Alternative and complementary proxies should be sought.

Acknowledgments

For providing detailed bottom-up population data (grid cells < 1 km²)

- Francisco Goerlich (University of Valencia)
- Madrid Regional Statistical Institute
- Statistics Denmark
- Statistics Slovenia
- Statistics Finland
- Statistics Sweden

Acknowledgments

For collaborating in the validation of the results by comparing our estimates with population point-data:

- Ana M. Santos (Statistics Portugal)
- Rina Tammisto and Markku Koivula(Statistics Finland)
- Ingrid Kaminger (Statistics Austria)

