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Task is to find for the data

26666664

Y1, X11, X12, · · · , X1p

Y2, X21, X22, · · · , X2p
...

...
...

...
...

...
...

...
Yn, Xn1, Xn2, · · · , Xnp

37777775
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a relation between

the response variable Y =

26666664

Y1

Y2
...
...

Yn

37777775 (on one-hand-side)

and

explanatory variables X =

26666664

X11, X12, · · · , X1p

X21, X22, · · · , X2p
...

...
...

...
...

...
Xn1, Xn2, · · · , Xnp

37777775 (on the other).
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Let’s consider

REGRESSION MODEL

Yi = X ′i β
0 + εi =

pX
j=1

X ijβ
0

j + εi , i = 1, 2, ..., n

or in the matrix form
Y = Xβ0 + ε

where

β0 =

26664
β0

1

β0
2
...

β0
p

37775 are regression coefficients and ε =

26666664

ε1

ε2
...
...
εn

37777775 disturbances .

The goal is to estimate unknown regression coefficients.
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The ORDINARY LEAST SQUARES

β̂(OLS,n) = arg min
β∈Rp

Pn
i=1 (Yi − X ′i β)

2
= (X ′X )

−1 X ′Y

= β0 +
“

1

T

Pn
i=1 XiX ′i

”−1
1

n

Pn
i=1 Xiεi .

REMEMBER β̂(OLS,n) is solution of normal equations X (Y − Xβ) = 0.

If Orthogonality Condition is broken, i. e.

plim
T → ∞

1

n

Pn
i=1 Xiεi = IE {X1ε1} 6= 0,

β̂(LS,n) is biased and inconsistent.

How frequently does it happen ?
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EXAMPLES of SITUATIONS WHEN
EXPLANATORY VARIABLES AND DISTURBANCES

ARE CORRELATED

General examples:
1 Measurement of explanatory variable with a random error,
2 lagged values of response variable serve as explanatory ones,
3 system of regression equations (SUE, SE).

Specific examples:
1 Consumption always depends on the income of households,
2 inflation typically depends on interest rate, etc.
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The INSTRUMENTAL VARIABLES

β̂(IV ,n) is solution of normal equations Z (Y − Xβ) = 0

where

Z =

26666664

Z11, Z12, · · · , Z1p

Z21, Z22, · · · , Z2p
...

...
...

...
...

...
Zn1, Zn2, · · · , Znp

37777775 is the matrix of instrumental variables,

which were found as “substitutes” (instruments) for Xi , so that
plim

T → ∞

1

n

Pn
i=1 Ziεi = IE {Z1ε1} = 0.

β̂(IV ,n) =
`
Z ′X

´−1 Z ′Y = β0 +

 
1
T

nX
i=1

ZiX ′i

!−1
1
n

nX
i=1

Ziεi
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Hertzsprung-Russell diagram of stars cluster CYG OB1
(in the direction of Cygnus)

Number of stars = 47

Humpreys, R. M. (1978): Studies of luminous stars in nearby
galaxies. Supergiant and O stars in the milky way.

Astrophysical Journal Supplument Ser., 38, 309 - 350.
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Hertzsprung-Russell diagram
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THE ORDINARY LEAST SQUARES
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Fisher, R. A. (1922): On the mathematical foundation
of theoretical statistics.

Philos. Trans. Roy. Soc. London Ser. A 222, 309 - 368.

s2
n =

1
n − 1

n∑
i=1

(xi − x̄)2

Degrees of freedom t9 t5 t3
varN(0,1)(s

2
n)

vart(ν)(s2
n)

0.83 0.40 0!
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THE BLUE CURVE IS STANDARD NORMAL WHILE THE RED ONE IS THE

STUDENT’S WITH 5 DEGREES OF FREEDOM.

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2
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0.35
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Method of the least weighted squares (LWS)

Residuals

r2
i (β) =

(
Yi −

∑p
j=1 Xijβj

)2

Order statistics of squared residuals, i. e.

r2
(1) (β) ≤ r2

(2) (β) ≤ ... ≤ r2
(n) (β)

Weights

1 ≥ w1 ≥ w2 ≥ ... ≥ wn ≥ 0

β̂(LWS,n,h) = arg min
β∈Rp

∑n
i=1 wi · r2

(i) (β)
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Method of the least weighted squares (LWS)

Order statistics of squared residuals, i. e.

r2
(1) (β) ≤ r2

(2) (β) ≤ ... ≤ r2
(n) (β) ,

weight function

w(s) : [0, 1] → [0, 1], w(1) = 1, nonincreasing

β̂(LWS,n,h) = arg min
β∈Rp

∑n
i=1 w

( i−1
n

)
r2
(i) (β)
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Method of the least weighted squares (LWS)

Order statistics of squared residuals, i. e.

r2
(1) (β) ≤ r2

(2) (β) ≤ ... ≤ r2
(n) (β) ,

weight function

w(s) : [0, 1] → [0, 1], w(1) = 1, nonincresing

β̂(LWS,n,h) = arg min
β∈Rp

∑n
i=1 w

( i−1
n

)
r2
(i) (β)

Víšek, J. Á. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.wi = w

( i−1
n

)
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Method of the least weighted squares (LWS)

Ranks of the squared residuals

π(β, j) = i ∈ {1, 2, ..., n} ⇔ r2
j (β) = r2

(i)(β)

β̂(LWS,n,h) = arg min
β∈Rp

∑n
i=1 w

( i−1
n

)
r2
(i) (β)

= arg min
β∈Rp

∑n
j=1 w

(
π(β,j)−1

n

)
r2
j (β)

Normal equations for the least weighted squares∑n
j=1 w

(
π(β,j)−1

n

)
Xj

(
Yj − X ′

j β
)

= 0.

Jan Ámos Víšek INSTRUMENTAL WEIGHTED VARIABLES -
√

n-CONSISTENCY



Basic framework and goal
The most frequently used methods - in the past and today

Underestimated deficiency of classical methods
Robustification of the Instrumental Variables

Let’s recall:

Normal equations for the ordinary least squares∑n
j=1 Xj

(
Yj − X ′

j β
)

= 0

and compare it with:

Normal equations for the least weighted squares∑n
j=1 w

(
π(β,j)−1

n

)
Xj

(
Yj − X ′

j β
)

= 0.
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Method of the instrumental variables - theory

Estimate by the method of the instrumental variables is given by

β̂(IV ,n) = β0 +
(

1
n
∑n

j=1 ZjX ′
j

)−1
1
n
∑n

j=1 Zjεj ,∑n
j=1 Zj

(
Yj − X ′

j β
)

= 0

i. e., the estimate is unbiased and consistent.
Unfortunately, it is not robust.

Robustification is straightforward !
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Instrumental weighted variables (IWV ) - definition

Definition
The estimator by means of the instrumental weighted variables

β̂(IWV ,n,w) is defined as (any) solution of the normal equations

n∑
j=1

w
(

π(β, j)− 1
n

)
Zj

(
Yj − X ′

j β
)

= 0.

Víšek, J. Á. (2004): Robustifying instrumental variables.
Proceedings of COMPSTAT’2004,

Physica-Verlag/Springer, 1947 - 1954.
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Instrumental weighted variables (IWV ) - algorithm

Víšek, J. Á. (2006): Instrumental Weighted Variables - algorithm.
Proceedings of COMPSTAT’2006,

Physica-Verlag/Springer, 777-786.
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Instrumental weighted variables - asymptotic theory

Theorem
Let C1, C2, C3 and C4 hold. Then the estimator by

instrumetal weighted variables- β̂(IWV ,n,w) is consistent, i. e.

β̂(IWV ,n,w) −→
p

β0 for n →∞.

Víšek, J. Á. (2009): Consistency of the instrumental weighted variables.
Annals of the Institute of Statistical Mathematics,

Vol.61, No.3 (September, 2009).
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Instrumental weighted variables - asymptotic theory

NC1 Random variables
X
{
(X ′

i , Z ′
i , εi)

′}∞
i=1 - sequence independent equally

distributed r.v.’s,
X ∀ (i ∈ N) Zi and εi - mutually independent,
X D.f. FX ,Z (x , z) - absolutely continuous,
X IE

{
w
(
Fβ0(|ε1|)

)
Z1X ′

1
}

a IE
{

Z1Z ′
1
}

- positive definite,

X ∃ (q > 1) : IE {‖Z1‖ · ‖X1‖}q < ∞,
density fe|X (r |X1 = x) is uniformly in x Lipschitz of the first
order,
|f ′e(r)| < U < ∞.

Conditions
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Instrumental weighted variables - asymptotic theory

NC2 Weight function
X w(α) : [0, 1] → [0, 1], w(0) = 1,
X absolutely continuous, nonincreasing,
X ∃ derivative w ′(α) > −L, L ∈ R+,

w ′(α) is Lipschitz of the first order.

Conditions

Theorem
Let NC1, NC2, C3 a C4 hold. Then the estimator by means of

the instrumental weighted variables is
√

n-consistent, i. e.

∀(ε > 0) ∃(Kε ∈ R, nε ∈ N) ∀(n > nε)

P
(∥∥∥√n

(
β̂(IWV ,n) − β0

)∥∥∥ < Kε

)
> 1− ε.

Key result!
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Instrumental weighted variables - asymptotic theory

Let’s denote g(r) density of r. v. e2
1.

AC1 D. f. of error term
∀ (a ∈ R+) ∃

(
∆(a) > 0

)
inf

r∈(0,a+∆(a))
g(r) > Lg > 0

∃(s > 1) : IE |ε1|2s < ∞

Conditions

Theorem

Let Q = IE
{

w
(
Fβ0(|ε1|)

)
Z1X ′

1
}

and let NC1, NC2, C3, C4
and AC1 be fulfilled. Then for the estimator by means of the
instrumental weighted variables we have following Bahadur
representation
√

n
(
β̂(IWV ,n,w) − β0

)
= Q−1 · 1√

n

n∑
i=1

w
(
Fβ0(|εi |)

)
· Ziεi + op(1)

for n →∞.
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THE LEAST SQUARES

√
n
(
β̂(LS,n) − β0

)
=

(
1
n

X ′X
)−1 1√

n

n∑
i=1

Xiεi

THE INSTRUMENTAL WEIGHTED VARIABLES

√
n
(
β̂(IWV ,n,w) − β0

)
= Q−1 · 1√

n

n∑
i=1

w
(
Fβ0(|εi |)

)
· Ziεi + op(1)
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THE LEAST SQUARES

√
n
(
β̂(LS,n) − β0

)
=

(
1
n

X ′X
)−1 1√

n

n∑
i=1

Xiεi

r
(
β̂(LS,n)

)
=

(
II − 1

n
X
(

1
n

X ′X
)−1

X ′

)
ε

THE INSTRUMENTAL WEIGHTED VARIABLES

√
n
(
β̂(IWV ,n,w) − β0

)
= Q−1 · 1√

n

n∑
i=1

w
(
Fβ0(|εi |)

)
· Ziεi + op(1)

r
(
β̂(IWV ,n,w)

)
=

(
II − 1

n
XQ−1X ′

)
ε + op(n−

1
2 )
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