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Abstract. The definition of Instrumental Weighted Variables (IWV) (which is a robust
version of the classical Instrumental Variables) and conditions for the weak consistency as
given in Vı́̌sek (2009) are recalled. The reasons why the classical Instrumental Variables
were introduced as well as the idea of weighting the order statistics of squared residuals
(rather than directly the squared residual - firstly employed by the Least Weighted Squares,
see Vı́̌sek (2000)) are also recalled. Then

√
n-consistency of all solutions of the corre-

sponding normal equations is proved.
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INTRODUCTION

The paper continues in studies of Vı́̌sek (2009). That it why we recall reasons for introducing the
Instrumental Weighted Variables as well as for employing the idea of weighting the order statistics
of squared residuals (see Vı́̌sek (2000)), only briefly. Nevertheless, we will do it in a way to make
the paper self-contained.

Let N denote the set of all positive integers, R the real line and Rp the p-dimensional Euclidean
space. All vectors will be assumed to be the column ones and throughout the paper, we assume
that all random variables (r.v.’s) are defined on a basic probability space (Ω,A, P ). For a sequence
of (p + 1)-dimensional r. v.’s

{
(X

′
i , ei)

′}∞
i=1

, any n ∈ N and β0 ∈ Rp the linear regression model
given as

Yi = X
′
iβ

0 + ei =
p∑

j=1

Xijβ
0
j + ei, i = 1, 2, ..., n (1)

will be considered. Without loss of generality we may assume that β0 = 0 (otherwise we should
write in what follows β − β0 instead of β; nevertheless, we will write fully β − β0 instead of only
β when formulating the asymptotic results because the analogous results are given in such a way,
see e. g. Jurečková and Sen (1989), Kalina (2007) or Č́ıžek (2008), among many others). We study
the model with intercept, i.e. we assume that the first coordinate of explanatory variables Xi’s is
degenerated and equal to 1. The following conditions will be considered.

1Research was supported by grant of GA ČR number 402/06/0408.
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C1 The sequence
{
(X

′
i , ei)

′}∞
i=1

is sequence of independent and identically distributed random vari-

ables (i.i.d. r.v.’s) with distribution function FX,e(x, v) = F (1)(x1) · F (2)
X,e(x2, v) where F (1)(x1) :

R1 → [0, 1] is d. f. degenerated at 1 and F
(2)
X,e(x2, v) is absolutely continuous. Moreover, the

density fe|X(v|X1 = x) is uniformly in x bounded by Ue and IE
{
(X

′
1, e1)

′ · (X ′
1, e1)

}
is positive

definite matrix.

FX(x) and Fe(v) (fX(x) and fe(v)) will stay for the marginals of F
(2)
X,e(x2, v) (and their densities,

respectively). Finally, notice please that fe(v) = IExfe(v|X1 = x) ≤ IExUe = Ue.

The form of the conditions C1 does not allow for dummy variable(s). However, it is clear (from
what follows) that it is only matter of technicalities. On the other hand, accommodating C1, to
allow the inclusion of dummies, would bring (unnecessarily) complicated notations.

ESTIMATING BY MEANS OF INSTRUMENTAL VARIABLES

The estimator of the regression coefficients β0 of the model (1) which is probably the most fre-
quently used, is the (Ordinary) Least Squares β̂(OLS,n). On the other hand, due to the fact that

β̂(OLS,n) = β0 +

(
1
n

n∑

k=1

XkX
′
k

)−1
1
n

n∑

i=1

Xiei and lim
n→∞

1
n

n∑

i=1

Xiei = IEX1e1 in probability,

(2)
one easy verifies that the violation of orthogonality condition, i. e. when IE {ei|Xi} 6= 0, implies
bias and inconsistency of the (Ordinary) Least Squares (where, due to the almost sure convergence
of 1

n

∑n
k=1 XkX

′
k to IE (X1 ·X ′

1), there is a set A, P (A) = 1 such that for any ω ∈ A, there is
nω ∈ N so that for any n > nω we have 1

n

∑n
k=1 XkX

′
k positive definite. Moreover, (asymptotic)

normality of the estimator is also violated.

For one of the best known example of the situation when the orthogonality condition fails -
namely measurement of explanatory variables with a random error - see Judge et al. (1985) or
Vı́̌sek (1998), and it was discussed in details in Vı́̌sek (2009). We are going to recall another famous
example justifying employment of the method of instrumental variables, also given in Judge et al.
(1985). So let us consider (with a bit of freedom from the rigor) the model with lagged explanatory
variables. Assume the simplest one, with the geometric structure of coefficients, i. e.

Yt = γ
∞∑

j=1

λj−1xt−j+1 + et, t = ...,−1, 0, 1, 2, ..., T (3)

with a sequence of i.i.d. disturbances {et}∞t=−∞, IEet = 0 and IEe2
t = σ2 ∈ (0,∞). Clearly, we are

not able to estimate directly coefficients γ and λ, so writing model for t− 1

Yt−1 = γ
∞∑

j=1

λj−1xt−j + et−1,

multiplying it by λ and subtracting from (3), we obtain

Yt = λYt−1 + γxt + et − λet−1 = λYt−1 + γxt + ut. (4)
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Now, the “explanatory” variable Yt−1 is correlated with the error term ut and then (2) indicates
that β̂(OLS,n) is inconsistent. Although just considered model does not fulfill C1 (as the sequence
{Yt−1, xt, ut}∞t=2 is not i.i.d.), it quite well illustrate that the situation when the orthogonality
condition fails is not an academic one.

The classical econometrics solve such situations usually by means of the Method of Instrumental
Variables.

Definition 1 For any sequence of p-dimensional random vectors {Zi}∞i=1 the solution(s) of the
(vector) equation

n∑

i=1

Zi

(
Yi −X

′
iβ

)
= 0 (5)

will be called the estimator obtained by means of the method of Instrumental Variables (or Instru-
mental Variables, for short) and denoted by β̂(IV,n).

Remark 1 The elements of the sequence {Zi}∞i=1 are usually called instruments. Without loss
of generality we may assume that Zi1 = 1 and IEZij = 0, j = 2, 3, ..., p and i = 1, 2, .... We do
not lose generality firstly, due to the fact that Zi1 = 1 represents constants and hence they cannot
be correlated with disturbances (in fact we have then Zi1 = Xi1). Secondly, what concerns the
assumption that IEZij = 0, j = 2, 3, ..., p, if it would not be fulfilled, i. e. when IEZij 6= 0, we can
consider Z̃ij = Zij − IEZij and change appropriately the intercept of the original model (1).

The method became at the end of the last century more or less a standard tool in many case
studies of panel data since the correlation of explanatory variables and disturbances frequently
appeared, see Bowden and Turkington (1984), Judge et al. (1985), Manski and Pepper (2000),
Stock and Trebbi (2003), to give some among many others. There are many papers exploring the
best way of the selecting the instruments for explanatory variables which established useful, easy
implemented results, see e.g. Arellano and Bond (1991), Arellano and Bover (1995) or Sargan
(1988) (and for examples of implementation see for SAS - Der and Everitt (2002), for R and
S-PLUS - Fox, J. (2002)).

There is also possibility to cope with the break of orthogonality condition by another approach,
namely by the Total Least Squares, see e.g. Nievergelt (1994) or Van Huffel (2004) or Paige and
Strakoš (2002). Advantage of this method is that we do not need to select instruments. On the
other hand, the method need not have any solution or it can have several solutions. Moreover,
the evaluation is much more complicated.

Last but not least, the interpretation of regression model is quite different from the point of view
of economic applications (where the disturbances are assumed to include generally some (part
of) explanatory variables, e. g. when the model (1) includes proxies to approximate explanatory
variables which we cannot measure - education↔schooling) while in exact (especially natural)
sciences the error term is (more or less) considered to be an error of measurement of response
variable. As the philosophy behind the Total Least Squares corresponds with the interpretation
of regression model in exact sciences, they are applied there, while the method of Instrumental
Variables is employed mostly in the social sciences. On the other hand, in the social sciences we
have at our disposal frequently “natural” instruments, e. g. lagged explanatory variables.
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RECALLING THE LEAST WEIGHTED SQUARES

Let us enlarge a bit the notations. Let us denote for any β ∈ Rp by ri(β) = Yi − X ′
iβ the i-th

residual and by r2
(h)(β) the h-th order statistic among the squared residuals. To be more explicit,

we have
r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β). (6)

Then the Least Weighted Squares can be defined as follows (see Vı́̌sek (2000), see also (2002b, c))

β̂(LWS,n,w) = argmin
β∈Rp

n∑

i=1

wir
2
(i)(β) (7)

where wi, i = 1, 2, ..., n are weights2. They are usually generated by a weight function with the
following properties3:
C2 Weight function w : [0, 1] → [0, 1] is absolutely continuous and nonincreasing, with the deriva-
tive w′(α) bounded from below by −L, w(0) = 1.

Then put wi = w
(

i−1
n

)
. Following Hájek and Šidák (1967) for any i ∈ {1, 2, ..., n} let us denote

by π(β, i) the rank of the i-th squared residual. It means that π(β, i) = j ∈ {1, 2, ..., n} iff
r2
i (β) = r2

(j)(β) (notice that π(β, i) is r.v.). Then we have

β̂(LWS,n,w) = argmin
β∈Rp

n∑

i=1

w

(
π(β, i)− 1

n

)
r2
i (β). (8)

It is straightforward to show that the Least Weighted Squares are solution of normal equations

INEX,n(β) =
n∑

i=1

w

(
π(β, i)− 1

n

)
Xi

(
Yi −X ′

iβ
)

= 0, (9)

see Vı́̌sek (2009).

At the end of this paragraph let us recall that the Least Weighted Squares are the robust version
of the Ordinary Least Squares which removes the sensitivity of OLS to influential observations.
By flexibility of weight function it enable us to adapt the level and character of robustness of the
method to the level and to the character of contamination of data, see Maš́ıček (2004). In this
way we can obtain as the special cases of LWS the estimators as the Least Median of Squares or
the Least Trimmed Squares, see Hampel et al. (1986) or Rousseeuw and Leroy (1987).

The sensitivity of OLS to the influential observations follows from the shape of normal equations

n∑

i=1

Xi
(
Yi −X ′

iβ
)

= 0. (10)

High sensitivity to the outliers is due to the presence of residuals ri(β) = Yi − X ′
iβ in (10) and

similarly, sensitivity to the leverage points is implied by Xi’s in (10). As the shape of the normal
equations (5) is the same as the shape of normal equations (10), it is clear that the estimator by
means of the Instrumental Variables is sensitive to influential points in an analogous way as OLS
are.

2See also Č́ıžek (2002) where the estimator is called the Smoothed Least Trimmed Squares.
3Compare Hájek and Šidák (1967).
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On the other hand, the inconsistency of the Ordinary Least Squares in the case of failure of the
orthogonality condition (as we recalled it in INTRODUCTION), takes place generally also for
the Least Weighted Squares. That is why we define an estimator which will be an analogy of
the estimator obtained by the Instrumental Variables but which will weight down the residuals
of those observations which seem to be atypical. For complex discussion of the situations when
some observations are or seem to be clearly or more or less atypical see Hampel et al. (1986) or
Rousseeuw and Leroy (1987).

INSTRUMENTAL WEIGHTED VARIABLES

Definition 2 For any sequence of p-dimensional random vectors {Zi}∞i=1 the solution(s) of the
(vector) equation

INEZ,n(β) =
n∑

i=1

w

(
π(β, i)− 1

n

)
Zi

(
Yi −X ′

iβ
)

= 0 (11)

will be called the Instrumental Weighted Variables estimator and denoted by β̂(IWV,n,w).

The form of normal equations (11) is not suitable for proving consistency and
√

n-consistency. So,
let’s make the following consideration.

For any β ∈ Rp the empirical distribution of the absolute value of residual will be denoted F
(n)
β (v).

It means that, denoting the indicator of a set A by I {A}, we have

F
(n)
β (v) =

1
n

n∑

j=1

I {|rj(β)| < v} =
1
n

n∑

j=1

I
{
|ej −X ′

jβ| < v
}

=
1
n

n∑

j=1

I
{
ω ∈ Ω : |ej(ω)−X ′

j(ω)β| < v
}

. (12)

It is straightforward that then (for details see Vı́̌sek (2009))

F
(n)
β (|ri(β)|) =

π(β, i)− 1
n

and so (11) can be written as
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi

(
Yi −X ′

iβ
)

= 0. (13)

CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES

We will need also the following notation. For any β ∈ Rp the distribution of the product β′Z1X
′
1β

will be denoted Fβ′ZX′β(u), i. e.

Fβ′ZX′β(u) = P (β′Z1X
′
1β < u) (14)

and similarly as in previous, the corresponding empirical distribution will be denoted F
(n)
β′ZX′β(u),

so that

F
(n)
β′ZX′β(u) =

1
n

n∑

j=1

I
{
β′ZjX

′
jβ < u

}
=

1
n

n∑

j=1

I
{
ω ∈ Ω : β′ZjX

′
jβ < u

}
. (15)
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For any ζ ∈ R+ and any a ∈ R put

γζ,a = sup
‖β‖=ζ

Fβ′ZX′β(a). (16)

Due to the fact that the surface of the ball {β ∈ Rp, ‖β‖ = ζ} is compact, there is βγ ∈ {β ∈
Rp, ‖β‖ = ζ} so that

γζ,a = Fβ′γZXβγ (a). (17)

For any ζ ∈ R+ let us denote

τζ = − inf
‖β‖≤ζ

β′IE
[
Z1X

′
1 · I{β′Z1X

′
1β < 0}] β. (18)

Notice please that τζ ≥ 0 (due to the presence of I{β′Z1X
′
1β < 0} in (18)) and that again due to

the fact that the ball {β ∈ Rp, ‖β‖ ≤ ζ} is compact, the infimum is finite, and hence there is a
β̃ ∈ {β ∈ Rp, ‖β‖ ≤ ζ} so that

τζ = −β̃′IE
[
Z1X

′
1 · I{β̃′Z1X

′
1β̃ < 0}

]
β̃. (19)

C3 The instrumental variables {Zi}∞i=1 are independent and identically distributed with distribu-
tion function FZ(z). Moreover, they are independent from the sequence {ei}∞i=1. Further, decom-
posing the joint distribution function FX,Z(x, z) = F (1)(x1, z1) · F (2)(x2, z2) with F (1)(x1, z1) :
R2 → [0, 1] and F (2)(x2, z2) : R2(p−1) → [0, 1], we have F (2)(x2, z2) absolutely continuous,
IE

{
w(Fβ0(|e1|))Z1X

′
1

}
as well as IEZ1Z

′
1 are positive definite (one can compare C3 with Vı́̌sek

(1998) where we considered instrumental M -estimators and the discussion of assumptions for M -
instrumental variables was given) and there is q > 1 so that IE {‖Z1‖ · ‖X1‖}q < ∞. Finally,
there is a > 0, b ∈ (0, 1) and λ > 0 so that

a · (b− γλ,a) · w(b) > τλ (20)

with γλ,a and τλ given by (17) and (18).

Remark 2 Let us briefly discuss assumptions we have made. Let us recall that the Ordinary
Least Squares β̂(OLS,n) are optimal only under normality of disturbances. Here the optimality
means that the variance of β̂(OLS,n) reaches the lower Rao-Cramer bound (in multivariate Rao-
Cramer lemma we consider the ordering of the covariance matrices in the sense of ordering the
positive definite matrices). On the other hand, a small departure from normality may cause a large
decrease of efficiency (see e.g. Fisher (1920), (1922)). Without the assumption of normality of
disturbances β̂(OLS,n) is the best unbiased estimator (only) in the class of linear unbiased estima-
tors, for a discussion showing that restriction on linear estimators can be drastic see Hampel et
al. (1986). Sometimes we may meet with justification of the restriction on the class of linear
unbiased estimators by asserting that the linear estimators are scale- and regression-equivariant4.

4Let us recall that having denoted M(n, p) the set of all matrices of type (n×p) and recalling that the estimator
β̂ can be considered as a mapping

β̂(Y, X) : M(n, p + 1) → Rp,

the estimator β̂ of β0 is called scale-equivariant, if for any c ∈ R+, Y ∈ Rn and X ∈ M(n, p) we have

β̂(cY, X) = cβ̂(Y, X)
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But, there are a lot of nonlinear estimators which are scale- and regression-equivariant. In the
regression framework, the estimators as the Least Median of Squares, the Least Trimmed Squares
or the Least Weighted Squares can serve as examples (for an interesting discussion of this topic
see again Hampel et al. (1986), and also Bickel (1975) or Jurečková and Sen (1993)).

As the Least Weighted Squares can cope with contamination of data better than the Ordinary Least
Squares, we may guess that they are approximately optimal under the approximative normality of
disturbances, for some hint consult Maš́ıček (2003). As the present proposal of robustified instru-
mental variables is based on the same idea of weighting the order statistics of squared residuals as
the Least Weighted Squares, we can expect that the estimate can be approximately optimal under
approximative normality of disturbances. But then our assumptions seem to be quite acceptable.

Nevertheless, the assumption which deserve further discussion is the assumption (20). We are
going to show that it is a restriction on the weight function w. Let us return to (17). We have

γλ,a = F
β
′
λ
ZX

′
βλ

(a) = P
(
β
′
λZ1X

′
1βλ ≤ 0

)
+ P

(
0 < β

′
λZ1X

′
1βλ ≤ a

)
.

If we assume for a while Zj = Xj, for any fix λ ∈ R+ we have

lim
a→0+

Fβ
′
γXX

′
βγ

(a) = 0 (21)

but for γλ,a we have (again for fix λ ∈ R+)

lim
a→0+

Fβ′γZX′βγ
(a) = P

(
β
′
λZ1X

′
1βλ ≤ 0

)
. (22)

So, we can have γλ,a > 0. On the other hand, for any a > 0 we have

γλ,a < 1. (23)

Now let us turn to τλ. As

IE
∣∣∣β′Z1X

′
1β

∣∣∣ ≤ ‖β‖2 IE {‖Z1‖ ‖X1‖} ≤ ‖β‖2 IE {‖Z1‖ ‖X1‖}q < ∞,

we have
lim sup
‖β‖→0

∣∣∣ β
′
IE

[
Z1X

′
1I{β

′
Z1X

′
1β < 0}

]
β

∣∣∣ = 0. (24)

In other words, τλ can be done arbitrary small (just selecting λ ∈ R+ so that ‖λ‖ is small). It says
that if w(b) ≡ 1, there is b ∈ (0, 1) > γλ,a (even for any a > 0). It means that (21), (22), (23)
and (24) indicate that (20) can be always fulfilled but we may have slightly restricted possibility to
depress the influence of influential observations.

For consistency of β̂(LWS,n,w) we need an identification condition. To be able to give it, we need:

Let’s denote by Fβ(v) the distribution of the absolute value of residual, i. e.

Fβ(v) = P (|Y1 −X ′
1β| < v) = P

( ∣∣∣e1 −X ′
1

(
β − β0

)∣∣∣ < v

)
. (25)

and regression-equivariant if for any b ∈ Rp, Y ∈ Rn and X ∈ M(n, p)

β̂(Y + Xb, X) = β̂(Y, X) + b.

7



C4 The vector equation

β
′
IE

[
w (Fβ(|r1(β)|))Z1

(
e1 −X

′
1β

)]
= 0 (26)

in the variable β ∈ Rp has unique solution β0 = 0.

Lemma 1 Let the conditions C1, C2, C3 and C4 be fulfilled. Then any sequence
{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations INEZ,n(β̂(IWV,n,w)) = 0 (see (11)) is weakly consistent.

For the proof see Vı́̌sek (2009).

√
n-CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES

We will need to enlarge the previous conditions.

NC1 The density fe|X(r|X1 = x) is uniformly with respect to x Lipschitz of the first order (with
the corresponding constant equal to Be). Moreover, f ′e(r) exists and is bounded in absolute value
by U ′

e.
NC2 The derivative w′(α) of the weight function is Lipschitz of the first order (with the corre-
sponding constant Jw).

Lemma 2 Let the conditions C1, C2, C3, C4, NC1 and NC2 be fulfilled. Then any sequence{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations (11) (or (13)) INEZ,n(β̂(IWV,n,w)) = 0 is√
n-consistent.

Proof: We have to prove that

∀(ε > 0) ∃(nε ∈ N ,Kε < ∞) ∀(n > nε) P
({

ω ∈ Ω :
√

n
∥∥∥β̂(IWV,n,w) − β0

∥∥∥ > Kε

})
< ε.

We are going to give only a sketch of proof (to meet with space restriction). Moreover, the proof
is a chain of nearly routine approximations employing standard tools of probability theory. That
is why we give in details only a key step of proof5.

Let us recall that β̂(IWV,n,w) is given as solution of (13), i. e. as solution of the equation

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi

(
Yi −X ′

iβ
)

= 0.

Rewriting it, we obtain

1√
n

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Ziei =

1
n

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
ZiX

′
i ·
√

n
(
β − β0

)
. (27)

Since −L ≤ w′(v) ≤ 0 (and recalling that we have denoted by Fβ(v) the distribution of the
absolute value of residual), we have

sup
β∈Rp

∣∣∣w
(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

∣∣∣ ≤ Lw · sup
v∈R+

sup
β∈Rp

∣∣∣F (n)
β (v)− Fβ(v)

∣∣∣ .

5The paper with the proof containing all details in length is available on request from the present author.
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Further
1√
n

sup
β∈Rp

∥∥∥∥∥
n∑

i=1

[
w

(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

]
Ziei

∥∥∥∥∥

≤ 1√
n

sup
β∈Rp

n∑

i=1

∣∣∣w
(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

∣∣∣ · ‖Zi‖ · |ei|

≤ √
n · Lw · sup

v∈R+

sup
β∈Rp

∣∣∣F (n)
β (v)− Fβ(v)

∣∣∣ · 1
n

n∑

i=1

‖Zi‖ · |ei| .

As according to Lemma A.1
√

n · supv∈R+ supβ∈Rp

∣∣∣F (n)
β (v)− Fβ(v)

∣∣∣ is Op(1), we have

1√
n

sup
β∈Rp

∥∥∥∥∥
n∑

i=1

[
w

(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

]
Ziei

∥∥∥∥∥ = Op(1)

as n →∞. Hence, denoting X = (X1, X2, ..., Xn)′, Z = (Z1, Z2, ..., Zn)′ and e = (e1, e2, ..., en)′,

1√
n

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Ziei =

1√
n

n∑

i=1

w (Fβ(|ri(β)|))Ziei + R(1)
n (β,X, Z, e) (28)

where
sup
β∈Rp

∥∥∥R(1)
n (β, X, Z, e)

∥∥∥ = Op(1)

and Op(1) is to be understood in the sense that

∀(ε > 0) ∃(Kε < ∞) inf
n∈N

P

({
ω ∈ Ω : sup

β∈Rp

∥∥∥R(1)
n (β, X,Z, e)

∥∥∥ < Kε

})
> 1− ε. (29)

(28) allows to substitute the left hand side in (27) by the right hand side of (28). Elaborating the
same for the right hand side of (27), we arrive at

1√
n

n∑

i=1

w (Fβ(|ri(β)|))Ziei + R(1)
n (β, X, Z, e)

=
1
n

n∑

i=1

[
w (Fβ(|ri(β)|))ZiX

′
i + R(2)

n (β,X, Z, e)
]
· √n

(
β − β0

)
. (30)

The rest of proof is a (long) chain of approximations and estimations of upper boundaries of various
expressions, employing tools of classical mathematical analysis (as simple as Taylor expansion,
e. g.) and the means of mathematical statistics as laws of large numbers and the central limits
theorem.

CONCLUDING REMARKS

Lemma 2 shows that β̂(IWV,n,w) converges to β0 in the rate 1√
n
. It means that, e. g., the length

of the reliability intervals decreases as 1√
n

with the increasing number of observations. As this
is - under some natural regular conditions - the largest rate of convergence of estimators to
the respective “true” value of parameters, Lemma 2 confirms that our estimator employs the
information contained in data in an efficient way.
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Appendix

Lemma A.1 Let the conditions C1 hold and fix arbitrary ε > 0. Then there is a constant K < ∞
and nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

v∈R+

sup
β∈Rp

√
n

∣∣∣F (n)
β (v)− Fβ(v)

∣∣∣ < K

})
> 1− ε. (A.31)

For the proof of lemma see Vı́̌sek (2006).

Lemma A.2 Let for some p ∈ N ,
{
V(n)

}∞
n=1

, V(n) =
{
v

(n)
ij

}j=1,2,...,p

i=1,2,...,p
be a sequence of (p × p)

matrixes such that for i = 1, 2, ..., p and j = 1, 2, ..., p

lim
n→∞ v

(n)
ij = qij in probability (A.32)

where Q = {qij}j=1,2,...,p
i=1,2,...,p is a fixed nonrandom regular matrix. Moreover, let

{
θ(n)

}∞
n=1

be a
sequence of p–dimensional random vectors such that

∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(
‖θ(n)‖ > K

)
> ε.

Then
∃ ( δ > 0) ∀ (H > 0)

so that
lim sup

n→∞
P

(∥∥∥V(n)θ(n)
∥∥∥ > H

)
> δ.

Proof: Due to (A.32) the matrix V(n) is regular in probability. Let then 0 < λ1n < λ2n < ... <
λpn and z1n, z2n, ..., zpn be eigenvalues and corresponding eigenvectors (selected to be mutually
orthogonal) of the matrix [V(n)]TV(n). Let us write θ(n) =

∑p
j=1 ajnzjn (for an appropriate vector

an = (a1n, a1n, ..., apn)T ). Then we have

∥∥∥V(n)θ(n)
∥∥∥
2

=
p∑

j=1

[ajn]2λjn‖zjn‖2 ≤ λ1n‖θ(n)‖. (A.33)

Moreover, denoting λ1 the smallest eigenvalue of the matrix QT Q, we have λ1n → λ1 in probability
as n →∞. The assertion of the lemma then follows from (A.33), see also Vı́̌sek (1996) or (2002a).
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Vı́̌sek, J. Á. (2009): Consistency of the instrumental weighted variables. To appear in Annals of the
Institute of Statistical Mathematics, Vol.61, No.3 (September, 2009).

12


