Bayesian Networks for Modeling and Assessment of Credit Concentration Risks

Tatjana Pavlenko
Department of Statistics, Stockholm University, Sweden
(Collaborative work with A. Chernyak, Dep. of Economical Cybernetics,
Kiev State University, Ukraine)

Outline

- Problem statement: The destructive power of credit risk concentration.
- How to capture and model uncertain relationships between the risk related variables?
- BN probabilistic graphs as a tool for risk modeling and assessment.
- Typical BN structures and decomposition of the probability distribution.
- Empirical framework: Related party disclosure and BN structure.
- Measure of mutual information for model assessment.
- Updating algorithms and stress testing.
- Conclusions and scope for futute.

Bank Concentration Risk

by Jonathan York
What's the chance of everything going wrong at the same time in your credit portfolio? That's really the question that keeps bank-ers-and their regulators-awake at night.

Bayesian networks

- Bayesian networks are a special case of multivariate (discrete) probability distributions embodying a collection marginal and conditional independencies which may be represented by means of a directed acyclic graph.
- Consider a set of random variables, $\mathcal{X}=\left\{X_{1}, \ldots, X_{d}\right\}$. Two components of a BN model induced over \mathcal{X} are $\langle\mathcal{G}, P\rangle$.
- \mathcal{G} is the directed acyclic graph representing the independence assumption: each X_{i} is conditionally independent of its non-descendants given its parent nodes $\Pi_{[i]}$ in \mathcal{G} and
- $P=\left\{P\left(x_{1} \mid \Pi_{[1]}\right), \ldots, P\left(x_{d} \mid \Pi_{[d]}\right)\right\}$ which represents the set of d conditional probability distributions given the set of parent nodes $\Pi_{[i]}$ for each $X_{i}, i=1, \ldots, d$.
- Convention: We are going to identify nodes of a graph with random variables.
- Probability factorization $P\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} P\left(x_{i} \mid \Pi_{[i]}\right)$.

BN structures and probability factorization

a)

b)

c)

Figure: Three typical Bayesian Network structures: a) N-BN b) TAN c) k-BN.

- We specify the simultaneous distribution by a set of simpler conditional distributions (modularity)
a)

$$
P_{Y, x_{1}, \ldots, x_{d}}\left(y, x_{1}, \ldots, x_{d}\right)=P(y) \cdot \prod_{i=1}^{d} P\left(x_{i} \mid y\right)
$$

b) $\quad P_{Y, x_{1}, \ldots, x_{d}}\left(y, x_{1}, \ldots, x_{d}\right)=P(y) \cdot P\left(x_{i} \mid y\right) \cdot \prod_{j=1, j \neq i}^{d} P\left(x_{j} \mid x_{i}, y\right)$,
c) $\quad P_{Y, x_{1}, \ldots, x_{d}}\left(y, x_{1}, \ldots, x_{d}\right)$

$$
=P(y) \cdot P\left(x_{1} \mid \Pi_{[1]}\right) \cdots \cdot P\left(x_{d-1} \mid \Pi_{[d-1]}\right) \cdot P\left(x_{d} \mid \Pi_{[d]}\right)
$$

Related party disclosure and risk related chracteristics

- Direct relationships in a group of related borrowers according to Related Party Disclosures requirements IAS 24 (2008)

- Decoding codes for the related party disclosures.

Role	Characteristic
1	Founder of bank or business partner
2	Director of a business partner
3	Depositor/Guarantor
4	Connected persons (e.g family members)

TAN structure and probability distributions

	$y=n b$	$y=b$
$P_{S_{1} \mid Y^{(s \mid y)}}$	0.7	0.2
$P_{\left.S_{1}\left\|Y^{(n s}\right\| y\right)}$	0.3	0.8
$P_{S_{2} \mid Y^{(s \mid y)}}$	0.7	0.2
$P_{S_{2} \mid Y^{(n s \mid y)}}$	0.3	0.8
$P_{S_{3} \mid Y^{(s \mid y)}}$	0.6	0.3
$P_{S_{3} \mid Y^{(n s \mid y)}}$	0.4	0.7
$P_{S_{4} \mid Y^{(s \mid y)}}$	0.8	0.1
$P_{S_{4} \mid Y^{(n s \mid y)}}$	0.2	0.9
$P_{S_{5} \mid Y^{(s \mid y)}}$	0.6	0.3
$P_{S_{5} \mid Y}(n s \mid y)$	0.4	0.7

	$x=s$	$x=n s$
$P_{T_{1} \mid S_{3}}(s \mid x)$	0.6	0.3
$P_{T_{1} \mid S_{3}}(n s \mid x)$	0.4	0.7
$P_{T_{2} \mid S_{2}}(s \mid x)$	0.6	0.3
$P_{T_{2} \mid S_{2}}(n s \mid x)$	0.4	0.7
$P_{T_{3} \mid S_{3}(s \mid x)}$	0.55	0.25
$P_{T_{3} \mid S_{3}(n s \mid x)}$	0.45	0.75
$P_{T_{4} \mid S_{1}(s \mid x)}$	0.65	0.3
$P_{T_{4} \mid S_{1}(n s \mid x)}$	0.35	0.7
$P_{T_{5} \mid S_{2}(s \mid x)}$	0.52	0.45
$P_{T_{5} \mid S_{2}}(n s \mid x)$	0.48	0.55

	$y=n b$	$y=b$
$P_{T_{1} \mid Y^{(s \mid y)}}$	0.5	0.3
$P_{\left.T_{1}\left\|Y^{(n s}\right\| y\right)}$	0.5	0.7
$P_{T_{2} \mid Y^{(s \mid y)}}$	0.5	0.4
$P_{\left.T_{2}\left\|Y^{(n s}\right\| y\right)}$	0.5	0.6
$P_{T_{3} \mid Y^{(s \mid y)}}$	0.5	0.35
$P_{\left.T_{3}\left\|Y^{(n s}\right\| y\right)}$	0.5	0.65
$P_{T_{4} \mid Y^{(s \mid y)}}$	0.6	0.5
$P_{T_{4} \mid Y^{(n s \mid y)}}$	0.4	0.5
$P_{T_{5} \mid Y^{(s \mid y)}}$	0.6	0.3
$P_{T_{5} \mid Y^{(n s \mid y)}}$	0.4	0.7

Model assessment

- Mutual information measure across $X_{i} \mathrm{~s}$ and $\Pi_{[i]}, i=1, \ldots, d$.

$$
M I_{X_{i}, \Pi_{[i]}}=\sum_{x, y} P_{X_{i}, \Pi_{[j]}}(x, y) \log \left(\frac{P_{X_{i}, \Pi_{[i]}}(x, y)}{P_{X_{i}}(x) \cdot P_{\Pi_{[j]}}(y)}\right)
$$

- Conditional mutual information

$$
M I_{X, Y \mid Z}=\sum_{x, y, z} P(x, y, z) \log \frac{P(x, y \mid z)}{P(x \mid z) P(y \mid z)}
$$

i	1	2	3	4	5
$M S_{S_{i}, Y}$	0.1325	0.1325	0.0462	0.2753	0.0462
$M I_{T_{i}, Y}$	0.0211	0.0051	0.0116	0.0051	0.0463

Table 4. Mutual information $M I_{S_{i}, Y}$ and $M I_{T_{i}, Y}$.

$M I_{S_{i}, T_{j} \mid Y}$	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
S_{1}	0	0	0	0.0670	0
S_{2}	0	0.0344	0	0	0.0419
S_{3}	0.0515	0	0.0484	0	0
S_{4}	0	0	0	0	0
S_{5}	0	0	0	0	0

Table 5. Conditional mutual information between T_{i} and S_{j} given Y.

T_{i}	$\Pi[i]$	$M_{T_{i}, \Pi[i]}$
T_{1}	$\left(S_{3}, Y\right)$	0.0726
	$\left(S_{i}, Y\right), \quad i \neq 3$	0.021
T_{2}	$\left(S_{2}, Y\right)$	0.0395
	$\left(S_{i}, Y\right), \quad i \neq 2$	0.0051
T_{3}	$\left(S_{3}, Y\right)$	0.060
	$\left(S_{i}, Y\right) \quad i \neq 3$	0.0116
T_{4}	$\left(S_{1}, Y\right)$	0.0721
	$\left(S_{i}, Y\right), \quad i \neq 1$	0.0051
T_{5}	$\left(S_{2}, Y\right)$	0.0882
	$\left(S_{i}, Y\right), \quad i \neq 2$	0.0463

Table 6. Joint mutual information $M I_{T_{i}, \Pi[i]}$ for the whole TAN.

Model assessment

b)

Figure: Kernel density approximation of the average values of $M I_{S, T \mid Y}$ and $M I_{S, T, Y}$ computed by a normal kernel smoother based on 1000 bootstrap replicates from Table 5 (top panel) and from Table 6 (bottom panel), respectively, the kernel-smoothing window. The bandwidth of the kernel-smoothing window was chosen to be optimal for estimating normal densities. The number of equally spaced points in both bootstrap samples were equal to 100 .

"What if" stress scenario

- Posterior bankruptcy risk given S_{2} and S_{4}

$$
P_{Y \mid S_{2}, S_{4}}(b \mid n s, n s)=\frac{P_{Y}(b) P_{S_{2} \mid Y}(n s \mid b) P_{S_{4} \mid Y}(n s \mid b)}{\sum_{y \in\{b, n b\}} P_{Y}(y) P_{S_{2} \mid Y}(n s \mid y) P_{S_{4} \mid Y}(n s \mid y)}=0.923
$$

- Posterior bankruptcy risk given T_{2} and T_{3}

$$
P_{Y \mid T_{2}, T_{3}}(b \mid n s, n s)=\frac{P_{T_{2} \mid Y}(n s \mid b) P_{T_{3} \mid Y}(n s \mid b) P_{Y}(b)}{\sum_{y \in\{b, n b\}} P_{T_{2} \mid Y}(n s \mid y) P_{T_{3} \mid Y}(n s \mid y) P_{Y}(y)}=0.6094
$$

- Local posterior probability updating

$$
P_{S_{2} \mid T_{2}, T_{5}}(n s \mid n s, n s)=\frac{P_{T_{2} \mid S_{2}}(n s \mid n s) P_{T_{5} \mid S_{2}}(n s \mid n s) P_{S_{2}}(n s)}{\sum_{x \in\{s, n s\}} P_{T_{2} \mid S_{2}}(n s \mid x) P_{T_{5} \mid S_{2}}(n s \mid x) P_{S_{2}}(x)}=0.7233 .
$$

Conclusions and scope for future

- Advantages of BN in modeling credit concentration risk
- Ability to integrate uncertain expert knowledge with data
- Visual representation
- Updating prior expert knowledge with new information as it is learned, thereby building a solution of increasing scope and complexity
- TAN and k-BN as classifiers provide a support tool in credit decision making
- Further steps
- Extention to a multinomial graph and more complicated graph structures
- Extention continuos variables
- Structure learning/optimization in combination with experts beliefs

