Bayesian Networks for Modeling and Assessment of Credit Concentration Risks

Tatjana Pavlenko

Department of Statistics, Stockholm University, Sweden (Collaborative work with A. Chernyak, Dep. of Economical Cybernetics, Kiev State University. Ukraine)

Tatjana Pavlenko Bayesian Networks ... Dept.of Statistics,SU

Outline

- Problem statement: The destructive power of credit risk concentration.
- How to capture and model uncertain relationships between the risk related variables?
- BN probabilistic graphs as a tool for risk modeling and assessment.
- Typical BN structures and decomposition of the probability distribution.
- Empirical framework: Related party disclosure and BN structure.
- Measure of mutual information for model assessment.
- Updating algorithms and stress testing.
- Conclusions and scope for futute.

Bank Concentration Risk

by Jonathan York

What's the chance of everything going wrong at the same time in your credit portfolio? That's really the question that keeps bankers—and their regulators—awake at night.

Bayesian networks

- Bayesian networks are a special case of multivariate (discrete) probability distributions embodying a collection marginal and conditional independencies which may be represented by means of a directed acyclic graph.
- ► Consider a set of random variables, X = {X₁,...,X_d}. Two components of a BN model induced over X are ⟨G, P⟩.
- G is the directed acyclic graph representing the independence assumption: each X_i is conditionally independent of its non-descendants given its parent nodes Π_[i] in G and
- P = {P(x₁|Π_[1]),..., P(x_d|Π_[d])} which represents the set of d conditional probability distributions given the set of parent nodes Π_[i] for each X_i, i = 1,..., d.
- Convention: We are going to identify nodes of a graph with random variables.
- Probability factorization $P(x_1, \ldots, x_d) = \prod_{i=1}^d P(x_i | \Pi_{[i]})$.

BN structures and probability factorization

Figure: Three typical Bayesian Network structures: a) N-BN b) TAN c) k-BN.

 We specify the simultaneous distribution by a set of simpler conditional distributions (modularity)

a)
$$P_{Y,X_1,...,X_d}(y, x_1, ..., x_d) = P(y) \cdot \prod_{i=1}^d P(x_i|y),$$

b) $P_{Y,X_1,...,X_d}(y, x_1, ..., x_d) = P(y) \cdot P(x_i|y) \cdot \prod_{j=1, j \neq i}^d P(x_j|x_i, y),$
c) $P_{Y,X_1,...,X_d}(y, x_1, ..., x_d)$
 $= P(y) \cdot P(x_1|\Pi_{[1]}) \cdot \cdots \cdot P(x_{d-1}|\Pi_{[d-1]}) \cdot P(x_d|\Pi_{[d]})$

Tatjana Pavlenko Bayesian Networks ...

Related party disclosure and risk related chracteristics

 Direct relationships in a group of related borrowers according to Related Party Disclosures requirements IAS 24 (2008)

Decoding codes for the related party disclosures.

Role	Characteristic				
1	Founder of bank or business partner				
2	Director of a business partner				
3	Depositor/Guarantor				
4	Connected persons (e.g family members)				

Tatjana Pavlenko

TAN structure and probability distributions

P(Y = b)	P(Y = nb)
0.5	0.5

	y = nb	y = b		x = 5	x = ns		y = nb	y = b
$P_{S_1 Y}(s y)$	0.7	0.2	$P_{T_1 S_2}(s x)$	0.6	0.3	$P_{T_1 Y}(s y)$	0.5	0.3
$P_{S_1 Y}(ns y)$	0.3	0.8	$P_{T_1 S_3}(ns x)$	0.4	0.7	$P_{T_1 Y}(ns y)$	0.5	0.7
$P_{S_2 Y}(s y)$	0.7	0.2	$P_{T_2 S_2}(s x)$	0.6	0.3	$P_{T_2 Y}(s y)$	0.5	0.4
$P_{S_2 Y}(ns y)$	0.3	0.8	$P_{T_2 S_2}^{2/2}(ns x)$	0.4	0.7	$P_{T_2 Y}(ns y)$	0.5	0.6
$P_{S_2 Y}(s y)$	0.6	0.3	$P_{T_2 S_2}(s x)$	0.55	0.25	$P_{T_2 Y}(s y)$	0.5	0.35
$P_{S_3 Y}(ns y)$	0.4	0.7	$P_{T_3 S_3}^{(ns x)}$	0.45	0.75	$P_{T_3 Y}(ns y)$	0.5	0.65
$P_{S_A Y}(s y)$	0.8	0.1	$P_{T_A S_1}(s x)$	0.65	0.3	$P_{T_A Y}(s y)$	0.6	0.5
$P_{S_4 Y}(ns y)$	0.2	0.9	$P_{T_4 S_1}^{(ns x)}$	0.35	0.7	$P_{T_4 Y}(ns y)$	0.4	0.5
$P_{S_E Y}(s y)$	0.6	0.3	$P_{T_{E} S_{2}}(s x)$	0.52	0.45	$P_{T_{E} Y}(s y)$	0.6	0.3
$P_{S_5 Y}(ns y)$	0.4	0.7	$P_{T_5 S_2}(ns x)$	0.48	0.55	$P_{T_5 Y}(ns y)$	0.4	0.7

Tatjana Pavlenko

Bayesian Networks ...

Model assessment

• Mutual information measure across X_i s and $\Pi_{[i]}$, i = 1, ..., d.

$$MI_{X_{i},\Pi_{[i]}} = \sum_{x,y} P_{X_{i},\Pi_{[i]}}(x,y) \log \Big(\frac{P_{X_{i},\Pi_{[i]}}(x,y)}{P_{X_{i}}(x) \cdot P_{\Pi_{[i]}}(y)}\Big)$$

Conditional mutual information

$$MI_{X,Y|Z} = \sum_{x,y,z} P(x,y,z) \log \frac{P(x,y|z)}{P(x|z)P(y|z)}$$

- (

· .

i	1	2	3	4	5
$MI_{S_i,Y}$	0.1325	0.1325	0.0462	0.2753	0.0462
$MI_{T_i,Y}$	0.0211	0.0051	0.0116	0.0051	0.0463

Table 4. Mutual information $MI_{S_i,Y}$ and $MI_{T_i,Y}$.

$MI_{S_i,T_j Y}$	T_1	T_2	T ₃	T_4	T_5
S_1	0	0	0	0.0670	0
S_2	0	0.0344	0	0	0.0419
S_3	0.0515	0	0.0484	0	0
S_4	0	0	0	0	0
S_5	0	0	0	0	0

Table 5. Conditional mutual information between T_i and S_j given Y.

T_i	$\Box[i]$	$MI_{T_i,\Pi[i]}$
T_1	(S_3, Y)	0.0726
	$(S_i, Y), i \neq 3$	0.021
T_2	(S_2, Y)	0.0395
	$ (S_i, Y), i \neq 2 $	0.0051
<i>T</i> ₃	(S_3, Y)	0.060
	$ (S_i, Y) i \neq 3 $	0.0116
T_4	(S_1, Y)	0.0721
	$(S_i, Y), i \neq 1$	0.0051
T_5	(S_2, Y)	0.0882
	$(S_i, Y), i \neq 2$	0.0463

Table 6. Joint mutual information $MI_{T_i,\Pi[i]}$ for the whole TAN.

Tatjana	Pavlenko	
Bavesian	Networks	

Model assessment

Figure: Kernel density approximation of the average values of $MI_{S,T|Y}$ and $MI_{S,T,Y}$ computed by a normal kernel smoother based on 1000 bootstrap replicates from Table 5 (top panel) and from Table 6 (bottom panel), respectively. the kernel-smoothing window. The bandwidth of the kernel-smoothing window was chosen to be optimal for estimating normal densities. The number of equally spaced points in both bootstrap samples were equal to 100.

"What if' stress scenario

• Posterior bankruptcy risk given S_2 and S_4

$$P_{Y|S_2,S_4}(b|ns,ns) = \frac{P_Y(b)P_{S_2|Y}(ns|b)P_{S_4|Y}(ns|b)}{\sum_{y \in \{b,nb\}} P_Y(y)P_{S_2|Y}(ns|y)P_{S_4|Y}(ns|y)} = 0.923$$

• Posterior bankruptcy risk given T_2 and T_3

$$P_{Y|T_2,T_3}(b|ns,ns) = \frac{P_{T_2|Y}(ns|b)P_{T_3|Y}(ns|b)P_Y(b)}{\sum_{y \in \{b,nb\}} P_{T_2|Y}(ns|y)P_{T_3|Y}(ns|y)P_Y(y)} = 0.6094$$

Local posterior probability updating

$$P_{S_2|T_2,T_5}(ns|ns,ns) = \frac{P_{T_2|S_2}(ns|ns)P_{T_5|S_2}(ns|ns)P_{S_2}(ns)}{\sum_{x \in \{s,ns\}} P_{T_2|S_2}(ns|x)P_{T_5|S_2}(ns|x)P_{S_2}(x)} = 0.7233$$

Tatjana Pavlenko Bayesian Networks ...

Conclusions and scope for future

Advantages of BN in modeling credit concentration risk

- Ability to integrate uncertain expert knowledge with data
- Visual representation
- Updating prior expert knowledge with new information as it is learned, thereby building a solution of increasing scope and complexity
- TAN and k-BN as classifiers provide a support tool in credit decision making

Further steps

- Extention to a multinomial graph and more complicated graph structures
- Extention continuos variables
- Structure learning/optimization in combination with experts beliefs