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Outline

I Problem statement: The destructive power of credit risk
concentration.

I How to capture and model uncertain relationships between
the risk related variables?

I BN probabilistic graphs as a tool for risk modeling and
assessment.

I Typical BN structures and decomposition of the
probability distribution.

I Empirical framework: Related party disclosure and BN
structure.

I Measure of mutual information for model assessment.
I Updating algorithms and stress testing.
I Conclusions and scope for futute.
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What’s the chance of everything going wrong 
at the same time in your credit portfolio? 
That’s really the question that keeps bank-
ers—and their regulators—awake at night.

Enterprise Risk Management

Bank Concentration Risk 
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Bayesian networks

I Bayesian networks are a special case of multivariate (discrete)
probability distributions embodying a collection marginal and
conditional independencies which may be represented by means of a
directed acyclic graph.

I Consider a set of random variables, X = {X1, . . . ,Xd}. Two
components of a BN model induced over X are 〈G,P〉.

I G is the directed acyclic graph representing the independence
assumption: each Xi is conditionally independent of its
non-descendants given its parent nodes Π[i ] in G and

I P = {P(x1|Π[1]), . . . ,P(xd |Π[d ])} which represents the set of d
conditional probability distributions given the set of parent nodes
Π[i ] for each Xi , i = 1, . . . , d .

I Convention: We are going to identify nodes of a graph with random
variables.

I Probability factorization P(x1, . . . , xd) = Πd
i=1P(xi |Π[i ]).
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BN structures and probability factorization
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Figure: Three typical Bayesian Network structures: a) N-BN b) TAN c) k-BN.

I We specify the simultaneous distribution by a set of simpler
conditional distributions (modularity)

a) PY ,X1,...,Xd (y , x1, . . . , xd) = P(y) · Πd
i=1P(xi |y),

b) PY ,X1,...,Xd (y , x1, . . . , xd) = P(y) · P(xi |y) · Πd
j=1,j 6=iP(xj |xi , y),

c) PY ,X1,...,Xd (y , x1, . . . , xd)
= P(y) · P(x1|Π[1]) · · · · · P(xd−1|Π[d−1]) · P(xd |Π[d ])
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Related party disclosure and risk related chracteristics

I Direct relationships in a group of related borrowers according to Related Party

Disclosures requirements IAS 24 (2008)

I Decoding codes for the related party disclosures.

Role Characteristic

1 Founder of bank or business partner
2 Director of a business partner
3 Depositor/Guarantor
4 Connected persons (e.g family members)
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TAN structure and probability distributions

Y

S1 S2 S3 S4S5

T1T2 T3T4 T5

P(Y = b) P(Y = nb)

0.5 0.5

y = nb y = b

PS1|Y
(s|y) 0.7 0.2

PS1|Y
(ns|y) 0.3 0.8

PS2|Y
(s|y) 0.7 0.2

PS2|Y
(ns|y) 0.3 0.8

PS3|Y
(s|y) 0.6 0.3

PS3|Y
(ns|y) 0.4 0.7

PS4|Y
(s|y) 0.8 0.1

PS4|Y
(ns|y) 0.2 0.9

PS5|Y
(s|y) 0.6 0.3

PS5|Y
(ns|y) 0.4 0.7

x = s x = ns

PT1|S3
(s|x) 0.6 0.3

PT1|S3
(ns|x) 0.4 0.7

PT2|S2
(s|x) 0.6 0.3

PT2|S2
(ns|x) 0.4 0.7

PT3|S3
(s|x) 0.55 0.25

PT3|S3
(ns|x) 0.45 0.75

PT4|S1
(s|x) 0.65 0.3

PT4|S1
(ns|x) 0.35 0.7

PT5|S2
(s|x) 0.52 0.45

PT5|S2
(ns|x) 0.48 0.55

y = nb y = b

PT1|Y
(s|y) 0.5 0.3

PT1|Y
(ns|y) 0.5 0.7

PT2|Y
(s|y) 0.5 0.4

PT2|Y
(ns|y) 0.5 0.6

PT3|Y
(s|y) 0.5 0.35

PT3|Y
(ns|y) 0.5 0.65

PT4|Y
(s|y) 0.6 0.5

PT4|Y
(ns|y) 0.4 0.5

PT5|Y
(s|y) 0.6 0.3

PT5|Y
(ns|y) 0.4 0.7
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Model assessment

I Mutual information measure across Xi s and Π[i ], i = 1, . . . , d .

MIXi ,Π[i ]
=

∑
x,y

PXi ,Π[i ]
(x , y) log

( PXi ,Π[i ]
(x , y)

PXi (x) · PΠ[i ]
(y)

)
I Conditional mutual information

MIX ,Y |Z =
∑
x,y ,z

P(x , y , z) log
P(x , y |z)

P(x |z)P(y |z)

i 1 2 3 4 5

MISi ,Y 0.1325 0.1325 0.0462 0.2753 0.0462
MITi ,Y 0.0211 0.0051 0.0116 0.0051 0.0463

Table 4. Mutual information MISi ,Y and MITi ,Y .
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MISi ,Tj |Y T1 T2 T3 T4 T5

S1 0 0 0 0.0670 0
S2 0 0.0344 0 0 0.0419
S3 0.0515 0 0.0484 0 0
S4 0 0 0 0 0
S5 0 0 0 0 0

Table 5. Conditional mutual information between Ti and Sj given Y .

Ti Π[i ] MITi ,Π[i ]

T1 (S3, Y ) 0.0726
(Si , Y ), i 6= 3 0.021

T2 (S2, Y ) 0.0395
(Si , Y ), i 6= 2 0.0051

T3 (S3, Y ) 0.060
(Si , Y ) i 6= 3 0.0116

T4 (S1, Y ) 0.0721
(Si , Y ), i 6= 1 0.0051

T5 (S2, Y ) 0.0882
(Si , Y ), i 6= 2 0.0463

Table 6. Joint mutual information MITi ,Π[i ] for the whole TAN.
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Model assessment
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Figure: Kernel density approximation of the average values of MI S,T |Y and
MI S,T ,Y computed by a normal kernel smoother based on 1000 bootstrap
replicates from Table 5 (top panel) and from Table 6 (bottom panel),
respectively. the kernel-smoothing window. The bandwidth of the
kernel-smoothing window was chosen to be optimal for estimating normal
densities. The number of equally spaced points in both bootstrap samples were
equal to 100.
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”What if” stress scenario

I Posterior bankruptcy risk given S2 and S4

PY |S2,S4
(b|ns, ns) =

PY (b)PS2|Y (ns|b)PS4|Y (ns|b)∑
y∈{b,nb} PY (y)PS2|Y (ns|y)PS4|Y (ns|y)

= 0.923

I Posterior bankruptcy risk given T2 and T3

PY |T2,T3
(b|ns, ns) =

PT2|Y (ns|b)PT3|Y (ns|b)PY (b)∑
y∈{b,nb} PT2|Y (ns|y)PT3|Y (ns|y)PY (y)

= 0.6094

I Local posterior probability updating

PS2|T2,T5
(ns|ns, ns) =

PT2|S2
(ns|ns)PT5|S2

(ns|ns)PS2(ns)∑
x∈{s,ns} PT2|S2

(ns|x)PT5|S2
(ns|x)PS2(x)

= 0.7233.
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Conclusions and scope for future

I Advantages of BN in modeling credit concentration risk

I Ability to integrate uncertain expert knowledge with data
I Visual representation
I Updating prior expert knowledge with new information as it is

learned, thereby building a solution of increasing scope and
complexity

I TAN and k-BN as classifiers provide a support tool in credit decision
making

I Further steps

I Extention to a multinomial graph and more complicated graph
structures

I Extention continuos variables
I Structure learning/optimization in combination with experts beliefs
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