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Abstract The main goal of this research is to demonstrate how probabilistic graphs may be used for
modeling and assessment of credit concentration risk. The destructive power of credit concentrations
essentially depends on the amount of correlation among borrowers. However, borrower companies
correlation and concentration of credit risk exposures have been difficult for the banking industry to
measure in an objective way as they are riddled with uncertainty. As a result, banks do not manage
to make a quantitative link to the correlation driving risks and fail to prevent concentrations from
accumulating. In this paper, we argue that Bayesian networks provide an attractive solution to the
problems identified above and we show how to apply them in representing, quantifying and managing
the uncertain knowledge in concentration of credits risk exposures. We first suggest the stepwise
Bayesian network model building scheme and show how to incorporate expert-based prior beliefs
regarding the risk exposure of a group of related borrowers and then update these beliefs through the
whole model with the new information as it is learned. We then explore a specific graph structure,
a tree-augmented Bayesian network, and show that this model provides better understanding of the
concentration risk accumulating due to strong direct or indirect business links between borrowers.
We also present two strategies of model assessment which exploit the measure of mutual information,
and show that the constructed Bayesian network is a reliable model that can be implemented to
identify and control threat from concentration of credit exposures. Finally, we demonstrate that
suggested tree-augmented Bayesian network is also suitable for stress testing analysis, in particular,
it can provide the estimates of the posterior risk of losses related to the unfavorable changes in the
financial conditions of a group of related borrowers.

Keywords: Bayesian network, uncertainty, tree-augmented graph, mutual information, expert-based
beliefs, related borrowers, posterior credit risk

1 Introduction

Concentration risks, especially concentrations in credit risk, have played a key role in the financial
instability of the banking sector during the last years, see reports by Basel Committee on Banking
Supervision (2006), Committee on the Global Financial System (2007), Bonti at al. (2006) and Das
et al. (2007). In order to assess concentrations in credit risks, it is important to first accurately
represent credit risk across key factors of exposure. The focus of our research is the risk of increased
exposure to losses due to correlation among borrowers. Qualitative studies of the destructive power
of this correlation are widely presented in credit risk assessment literature, see e.g. see York (2007),
Kalapodas and Thomson (2006). However, until recently, borrower correlation and concentration risks
have been difficult for the banking industry to measure in an objective way.

The traditional approaches for credit risk assessment apply credit value-at-risk (CVaR) and internal
rating-based (IRB) risk-weight models. Both approaches are based on two key assumptions: a) no
single exposure accounts for more than a vanishingly small share of the overall risk, and b) credit
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assessments do not allow for a rich correlation structure between individual risks, which means that
the corresponding credit model is additive. When these two assumptions hold, it is possible to show
that the risk assessment of the entire portfolio can be conducted from the bottom up; see more details
in e.g. Gordy and Lütkebohmert (2007). Statistical reasons behind the opting bottom-up models are
relative simplicity of the fitting model parameters which is due to the additive model structure.

However when the two assumptions behind the CVaR and IRB are violated, there is no guarantee
that the bottom-up methodology will be accurate. These assumptions are in particular unlikely to be
exactly met by actual credit portfolios for those financial institutes that are smaller in size or relatively
specialised. For such institutes, concentration risk can arise from a significant single exposure, from
concentration on the specific business area, and from loss dependencies due to strong direct or indirect
business links between borrowers. In such cases the marginal input to the overall risk by any single
borrower will likely depend on the risk profile of the other related borrowers and can not be captured
by an additive model. As a result, financial institutes do not manage to make a quantitative link to
the correlation driving risks and fail to prevent concentrations from accumulating. Often the effect
of correlations only become apparent when economic conditions turn sour, which results in ”storing-
up” losses and create a huge peak later on the trough of the economic circle, see Das et al. (2007),
York (2007). Hence, the amount of correlation among the borrower counterparts seems to play an
important part in the credit risk assessment. New modeling methods that allow to capture and control
the concentration risk arising from distinct but strongly correlated exposures have therefore attracted
a great deal of attention. Besides the goal of better understanding of concentration of credit risks,
these models can support rational decision making in the tricky area of risk management.

The main challenge with the credit risk modeling and assessment is that they are riddled with
uncertainty. Estimation of the probability of default (insolvency), modeling correlation structure for a
group of connected borrowers and estimation of amount of correlation are the most important sources
of uncertainty that can severely impair the quality of credit risk models.

In this research, we explore the Bayesian network (BN) methodology, a very promising model-
ing technique that provides a framework for representing, quantifying and managing the uncertain
knowledge in concentration of credits risk exposures. At a general level, a BN model consists of two
distinct, related components: one being a directed acyclic graph with nodes representing the ran-
dom feature variables (risk related factors) and edges representing direct relationships (dependencies)
among features (about which we may be uncertain); the other representing quantitative information
about the strengths of the relationships, usually expressed in terms of a joint probability distribu-
tion. In conjunction, the graphical and probabilistic components of the model represent a unique
multivariate probability distribution over the complete set of feature variables, thereby capturing and
visually representing the uncertain statements involved. In addition, BN modeling technique provides
the algorithms for the updating of probabilistic uncertainty in response to evidence and allows for
rational decision making under uncertainty. BN models were extensively applied as classification and
prediction tool in different domains; see e.g. Anderson et al. (2004), Cowell et al (2007), Sun and
Shenoy (2007), Hosack et al. (2008), Neil et al. (2008).

The contribution of our paper is twofold. First, is advocates a BN modeling approach to the
study of credit risk concentration in which a specific role for related parties is required. With this
approach we can incorporate expert-based initial beliefs regarding the risk exposure of a group of
related borrowers and then update these beliefs through the whole BN model with new information
as it is learned. Second, it explores a specific graph structure, a tree augmented BN, which allows for
better understanding of the concentration risks accumulating due to interaction between the borrowers
and analysing the formal properties of the posterior credit risk in controlling and desicion-making
processes. Thus, using the BN modeling approach we can understand the credit risk implications of
excessive lending to a group of related borrowers in a concrete setting. Moreover, we use the BN graph
representation to visual exploratory analyses of the effect of storing up risk of losses and suggest a
method of concentration risk stress-testing by carrying out what-if scenarios.

The rest of this paper is set out as follows. In Section 2, we review the basic framework of BN
graphical modeling and formalize our notion of prior and posterior credit concentration risk. Section 3
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formalizes the concept of related parties and explores the stepwise BN model building using a concrete
example of a private medium-sized bank in Ukraine and a number of credit risk related factors. In this
section, we also examine two strategies for model assessment, both of which are based on the concept
of mutual information. The first one adopts the threshold-based approach, where the reliability of an
edge in the graph is estimated using the average mutual information with averaging over all possible
graph edges. The second one is some what more complex and uses the approximate bootstrap-based
distribution of the average mutual information. We show how this distribution in turn allows for
specifying the edges of specified significance level for a BN graph. Further, the use of constructed BN
model for concentration risk stress tests is demonstrated by Bayesian updating of the posterior risk.
We conclude in Section 4.

2 BN probabilistic graphs for modeling credit concentration
risk

We start by reviewing the basic setting of BN graph modeling as a framework for capturing and
representing uncertainty. For more thorough treatment of the topic see e.g ... Associated with a
bank or a financial institute is a set of attributes, X1, . . . , Xd which in current study will be treated
as discrete random variables representing highly informative credit risk accounting factors. In what
follows we will use them to modeling relationships among the bank and corporate borrowers. We will
use the notations PX(x) = P (X = x) and PX|Y (x|y) = P (X = x|Y = y) to describe the marginal
and conditional probability distributions of the random variables X and X|Y , respectively. We will
skip the index X when it does not make any confusion.

2.1 The formalism

A Bayesian network (BN) is an annotated directed acyclic graph that encodes a joint probability
distribution over the set of random variables X = {X1 . . . , Xd}. Formally, a BN for X is a pair
〈G, P 〉. The first component, G, is a directed acyclic graph whose nodes correspond to the random
variables X1, . . . , Xd, and whose edges encode the direct probabilistic influences between the variables.
In this way, the graph G represents the independence assumption: each variable Xi is conditionally
independent of its non-descendants given its parent nodes Π[i] in G for all i = 1, . . . , d. The second
component of the pair, namely P = {P (x1|Π[1]), . . . , P (xd|Π[d])} represents the set of d conditional
probability distributions given the set of parent nodes Π[i] for each Xi, i = 1, . . . , d. For each node
we assign a binary random variable Xi.

Informally speaking, a directed edge Xi → Xj between two nodes Xi and Xj in the BN is a
statement (perhaps a belief) telling that there is an influence between the associated random vari-
ables; absence of an edge between Xi and Xj means that the corresponding random variables do not
influencing each other directly. More formally, the graph structure can be given by the set of parents
Π = (Π[1], . . . ,Π[d]) the associated set P defines the unique multivariate probability distribution of
X1, . . . , Xd that factorizes over the graph structure as

P (x1, . . . , xd) = Πd
i=1P (xi|Π[i]).

In general, the process of induction of a BN model can be divided into two main steps: structural
learning and parametric learning. Structural learning usually involves a search procedure guided
by a pre-specified score function which is defined over the space of all possible graph structures.
The search procedures aims to optimize the score and finishes when the local optimum is found.
Parametric learning consists of estimating parameters from the data. These parameters quantify the
(in)dependence relations between the variables, represented by the BN graph.

As the graph structure increases in the size and complexity, the run-time complexity of probabilistic
inference with BN becomes prohibitive. Complexity orders in terms of computational time and in
terms of number of parameters estimated are extensively studied in statistical literature, see e.g.
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Pérez et al. (2006), Ellis and Wong (2008) and references there in. These results clearly indicate the
need to constrain the space of possible graph structures by using the domain knowledge about the
context specific relationships among the feature variables.

In this study, we limit our attention to a class of the BN models whose graph G has a tree structure.
This means that in the BN induced over the set of random variables X = {Y, X1, . . . , Xd}, the nodes
have different status. The variable Y in the tree-structured graph denotes the node which has no
parents, that is Π[Y ] = {∅} and is referred to as a root of the tree. The remaining nodes, Xi ∈ G have
as potential parents either the root variable Y only, or both Y and at least one other variable Xj ,
i 6= j.

Depending on the complexity of the underlying relationships between the domain variables, the
BN tree-structure graph can be classified as a naive (N-BN), a tree-augmented (TAN), k-dependence
(k-BN), etc. The N-BN represents the least complex graph structure requiring that the root variable
Y be a parent of each variable Xi, i.e. Π[i] = {Y } for all i = 1, . . . , d. The corresponding probabilistic
relationship between the variables infers that all Xis are conditionally independent given the root
variable Y . This in turn means that the joint probability distribution of Y, X1, . . . , Xd can be factorized
as

PY,X1,...,Xd
(y, x1, . . . , xd) = P (y) · P (x1, . . . , xd|y) = P (y) ·Πd

i=1P (xi|y), (2.1)

which ensures that in this network structure, the probability P (y|x1, . . . , xd), the main term determin-
ing the converted conditional probability distribution of the root variable Y given observed X1, . . . , Xd

will be based on the marginal probability distribution, P (xi|y) thereby taking every variable Xi into
account. The graph structure of N-BN is depicted in Figure 1a) and will be used in what follows as
a base framework.

Even though the factorisation (2.1) induced by N-BN essentially simplifies probability calcula-
tions, the assumption about conditional dependence among the variables/attributes {X1, . . . , Xd}, is
clearly not always realistic. Consider for example a network structure for modeling the risk in a loan
application: is seems counter-intuitive to ignore the interactions between educational level, income
and age. In order to capture possible interactions between the variables in the induced BN, we will
use TAN model which imposes a tree-structure on the N-BN graph allowing additional edges among
{X1, . . . , Xd}. In an augmented structure, en edge from Xi to Xj implies that the influence of Xi of
the value of the root variable also depends on the evaluate of Xj . the tree-augmented graph structure
can therefore be described by identifying the set of parents Π[i] of each node. The resulting BN con-
verts the dependencies between Y, X1, . . . , Xd to the approximation of joint probability distribution
given by

PY,X1,...,Xd
(y, x1, . . . , xd) = P (y) · P (xi|y) ·Πd

j=1,j 6=iP (xj |xi, y), (2.2)

that is Π[j ] = {Y, Xi} for each Xj , and Xi is usually referred to as a super parent. Figure 1b)
illustrates one possible graph structure of TAN.

Finally we discuss k-dependence BN, that is a graph structure which extends TAN allowing each
node Xi to have at most k parent variables plus the root variable Y for each feature variable, Π[i] =
{Y, Xi1 , . . . , Xik}. This structure yields the following probability factorization

PY,X1,...,Xd
(y, x1, . . . , xd) = P (y) · P (x1|Π[1]) · · · · · P (xd−1|Π[d−1]) · P (xd|Π[d]), (2.3)

where Y ∈ Π[i] for all i = 1, . . . , d. Figure 1c) illustrates one special case of k-BN with k = 1.
Observe that both TAN and k-BN induce tree-structure graph and TAN models are equivalent to

k-BN models with k = 1. Observe also that according to the definition of k-BN the N-BN model is a
0-dependence BN.

All kinds of the structures G, introduced above can be interpreted as simplification of the corre-
spondent true multivariate probability distributions PY,X1,...,Xd

(y, x1, . . . , xd). These simplifications
are based on the relations of conditional dependency which are inferred from G, and they are repre-
sented by means of factorizations (2.1)-(2.3) which in general require less parameters than fitting the
joint probability distribution.
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Figure 1: Three typical Bayesian Network structures: a) N-BN b) TAN c) k-BN

In what follows, we will explore the rooted and directed tree BN graphs and demonstrate that
they provide an effective methodology for modeling and assessment the credit risk concentration.

2.2 Bayes rule and assessing posterior credit risk

Since the quantitative part of the BN model is represented by a set of conditional probabilities, we
start from Bayes’ theorem which is an essential part of probabilistic calculations. This theorem, for
two subsets of random variables X and Y such that P (X ) 6= 0 determines the conditional probability
distribution of Y given X = x as

P (Y = y|X = x) = P (y|x) =
P (x|y)P (y)

P (x)
. (2.4)

One particular case of (2.4) is obtained when Y is a single variable, i.e. Y = {Y } and X = {X1, . . . , Xd}
is a subset of variables. In this case,(2.4) becomes

P (y|x1, . . . , xd) =
P (y)P (x1, . . . , xd|y)∑
y P (y)P (x1, . . . , xd|y)

(2.5)

In the problem of credit risk assessment, Bayes’ theorem can be exemplified as follows. Sup-
pose the financial institute is interested to assess the credit risk arising from the uncertainty of a
borrower companies ability to perform its obligations, i.e. to repay the loan. Assume for concrete-
ness that the borrower solvency status, Y, is represented by a single binary random variable Y that
can take one of possible values, {Solv, Ins}, where Y = Solv means the company is solvent, and
Y = Ins means company is insolvent. Suppose also for simplicity that the two characteristics, the
stock market performance (X1 = {Good,Poor}) and the guarantor’s company financial condition
(X2 = {Sound,Distressed}), are thought to be associated with the borrower company credit strength.
Suppose that the results of credit expert examination show that the borrower’s stock market perfor-
mance is poor and the guarantor is financially not in sound health, i.e. {x1 = Poor, x2 = Distr}. Now,
given this cumulative evidence we wish to compute the probability that the company is insolvent, that
is, Y = Ins. Then, using Bayes’ theorem, we obtain

P (Y = Ins|X1 = Poor, X2 = Distr) (2.6)

=
1
K
· P (Y = Ins) · P (X1 = Poor, X2 = Distr|Y = Ins)

where K = P (X1 = Poor, X2 = Distr|Y = Ins) · P (Y = Ins)
+P (X1 = Poor, X2 = Distr|Y = Solv) · P (Y = Solv).

Interpretation: The probability P (Y = Ins) is the prior probability of the borrower companies insol-
vency, because it can be obtained before knowing the companies characteristics Xi. A numerical value
of this probability will be referred to as the prior credit risk that can be assigned by expert-based initial
belief regarding the risk exposure, or estimated as for example, an average percentage of companies
of the same financial level in the whole population that have recently been declared insolvent.
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The probability P (Y = Ins|X1 = Poor, X2 = Distr) is the posterior probability of the insolvency,
Y = Ins, because it is computed after knowing the outcomes X1 = Poor, X2 = Distr. This posterior
probability represents the revised experts’ belief for the credit risk given that X1 and X2 have been
observed and will be referred to as the posterior credit risk.

The probability P (X1 = Poor, X2 = Distr|Y = Ins) is referred to as the likelihood that an insolvent
borrower company Y = Ins, will show the outcomes states X1 = Poor, X2 = Distr. K plays the role
of normalizing constant in (2.6).

Thus, the credit risk assessment in the example above is based on updating the posterior probability
distribution of Y using both the prior and the likelihood. All component probability terms in the
expressions (2.6) can be evaluated from relatively few observed cases and easily updated with new
data/information as it is learned.

The BN model for credit risk in the example above can be represented by the graph G consisting of
the set of random variables (graph nodes) X = {X1, X2, Y } and associated dependencies (edges) be-
tween them. The calculations in (2.6) are performed assuming the complete graph structure. However,
depending on the problem at hand the relationships can be restricted to a specific graph structure and
the factorisation of the correspondent probability distribution can be used. For example, by restricting
the relationships between X1 and X2 to conditional independence given Y , a special case of N-BN
model (see Figure 1a)) can be induced. In this case, Π[i] = Y for each Xi and, since the graph has
no edges between X1 and X2,the joint likelihood decomposes according to the N-BN graph structure
(see (2.1)) into a product of two marginal conditional probabilities,

P (X1 = Poor, X2 = Distr|Y = Ins) =

= P (X1 = Poor|Y = Ins) · P (X2 = Distr|Y = Ins)

which essentially simplifies calculations.
An important aspect of the BN framework is that the constructed model can be used for a clas-

sification task where the goal is to accurately predict the value of the class variable Y given a set
of attributes X1, . . . , Xd. By using Bayesian minimum-error classification rule see e.g. Friedman et
al. (1997), we then assign an observed vector X to the class with the highest posterior probability,
P (y|x1, . . . , xd), specified by (2.5). This entails the use the winner-takes-all rule, see e.g Ekdahl and
Koski (2006), Pavlenko and Fridén (2007). When represented as a BN classifier, the model can be
used for customer credit evaluation. As in our example above with given binary class variable, Y , one
can pre-specify two classes of borrowers, one is highly reliable (sure to repay in time) and the other
one is not reliable (default certainly), and then assign a new borrower x1, . . . , xd to one of the classes
by maximizing the posterior probability, P (y|x1, . . . , xd). Classification accuracy and computational
efficiency of the BN classifiers were studied in statistical data analysis and classification literature, see
e.g. Ekdahl and Koski (2006), Pavlenko and Fridén (2007), Corrander et al (2009).

3 Description of the Empirical Framework

The problem of statistical learning of a BN model consists of finding the graph structure and estimating
correspondent probability parameters. However, in the real problem it is very difficult to find good
data, especially when the studied problem is complex. What we present in the current study is the
stepwise BN construction which combines expert knowledge with available data.

3.1 Model construction

We focus on a private mid sized bank in Ukraine whose aim was to design a credit risk model in which
a particular role of the related borrowers exposure can be analysed as a risk aggregating factor.

To identify significant risk sources and capture the threat from concentration of credit risk, the
credit experts select five financial institutes (FIs) and five private enterprises and single borrowers
whose entire credit grant accounts for a substantial proportion of the bank’s total capital funds.
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To capture potential correlations among these borrowers, a questionnaire with a number of com-
pulsory fields was stored and analysed, which is a part of the bank credit evaluation and approval
process, (a different structure of the questionnaire was used for FIs and private borrowers). The
questionnaire was developed according to IAS 24, Related Party Disclosures requirements, see IAS 24
(2008), and comprises the following compulsory characteristics

Role Characteristic
1 Founder of bank or business partner
2 Director of a business partner
3 Depositor/Guarantor
4 Connected persons (e.g family members)

Table 1. Decoding codes for the related party disclosures.

The screening process yields a group of connected borrowers together with the directed relationships
which are illustrated in Figure 2. The directed links in Figure 2 can be interpreted as follows. The

BANK

NAME nr 1 nr 2 nr 3 nr 4
ROLE 1 1 1 2

Financial Inst.

NAME FI 1 nr 1 nr 3 nr 5  nr 6 FI 2 nr 7 nr 1 nr 8 nr 3 nr 7 nr 20 FI 3 nr 9 nr 3 nr 10 nr 11 FI 4 nr 1 nr 2 nr 3 nr 12 FI 5 nr 3 nr 13 nr 14
ROLE 1 1 1 2 1 1 1 1 2 3 1 1 2 4 1 1 1 2 1 1 2

Private enterprise/borrowers

NAME PB 1 nr 9 nr 15 nr 16 PB 2 nr 17 nr 8 nr 16 nr 18 PB 3 nr 19 nr 10 nr 19 PB 4 nr 6 PB 5 nr 2 nr 3 nr 20 nr 21
ROLE 1 1 2 1 1 1 2 1 1 2 1 3 4 1 2

Bank

Figure 2: Related party disclosure. Decoding code names are given in Table 1.

three links between the bank and the fourth FI, for example, indicate that they have joint founders.
The two links from the third FI to the first and third private enterprises indicate that they have joint
founders or business partners.

To formalize the two previous stages and induce a BN model, we introduce a set of random
variables, Y , Si and Tj where Y denotes the bankruptcy status of the bank, Si denotes the solvency
status of the ith FI, i = 1, . . . , 5 and Tj denotes the solvency status of jth private enterprise, j =
1, . . . , 5. Then, the resulting BN graph, G, represented in Figure 3 consists of the following nodes,
X = {Y, S1, . . . , S5, T1, . . . , T5}, and edges representing direct dependencies between the nodes in
accordance with credit experts evaluation represented in Figure 2.

All the nodes in G are treated as binary random variables that assume the values {b, nb}, i.e.
bankrupt or non-bankrupt for Y , and {s, ns}, i.e solvent or insolvent for both Si and Tj . Observe
that the induced graph has a tree augmented structure, more precisely this is a special case of TAN
graph model introduced in Section 2. To show this we investigate a set of parents of one of Tis. The
node T2, for example, has the set of parent nodes, ΠT

[2] = ΠT
[5] = {Y, S2}, where the root node, Y ,

represents the bank status and the super parent node, S2, represents one of FIs. The structure of G
also can be interpreted as a particular case of k-BN with k = 1.

Recall that the BN is a pait 〈G, P 〉 that encodes a joint probability distribution over a set of
random variables X . Hence, in order to fully specify the network, the induced graph G will need
to be populated with the conditional probabilities P (xi|Π[i]) for each node in X . Observe that by
the tree structure of G, the Sis are conditionally independent given Y , and Tj are also conditionally
independent given their direct predecessors, Si and Y . The absence of an edge indicates thelack of
direct association.
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Y

S1 S2 S3 S4S5

T1T2 T3T4 T5

Figure 3: TAN representation of the group of related borrowers.

Both prior marginal and conditional probability distributions for the root node Y and the set of
nodes Si and Tj respectively, were assest by credit experts and summarized in the following table

P (Y = b) P (Y = nb)

0.5 0.5

y = nb y = b

PS1|Y (s|y) 0.7 0.2
PS1|Y (ns|y) 0.3 0.8

PS2|Y (s|y) 0.7 0.2
PS2|Y (ns|y) 0.3 0.8

PS3|Y (s|y) 0.6 0.3
PS3|Y (ns|y) 0.4 0.7

PS4|Y (s|y) 0.8 0.1
PS4|Y (ns|y) 0.2 0.9

PS5|Y (s|y) 0.6 0.3
PS5|Y (ns|y) 0.4 0.7

x = s x = ns

PT1|S3 (s|x) 0.6 0.3
PT1|S3 (ns|x) 0.4 0.7

PT2|S2 (s|x) 0.6 0.3
PT2|S2 (ns|x) 0.4 0.7

PT3|S3 (s|x) 0.55 0.25
PT3|S3 (ns|x) 0.45 0.75

PT4|S1 (s|x) 0.65 0.3
PT4|S1 (ns|x) 0.35 0.7

PT5|S2 (s|x) 0.52 0.45
PT5|S2 (ns|x) 0.48 0.55

y = nb y = b

PT1|Y (s|y) 0.5 0.3
PT1|Y (ns|y) 0.5 0.7

PT2|Y (s|y) 0.5 0.4
PT2|Y (ns|y) 0.5 0.6

PT3|Y (s|y) 0.5 0.35
PT3|Y (ns|y) 0.5 0.65

PT4|Y (s|y) 0.6 0.5
PT4|Y (ns|y) 0.4 0.5

PT5|Y (s|y) 0.6 0.3
PT5|Y (ns|y) 0.4 0.7

Table 2. Prior marginal and conditional probability distributions for the induced TAN.

Summarizing from above we see that the graph G together with the table of conditional probabilities
constitutes the full TAN model. The tree dependent probability distribution of {Y, Si, Tj , } can now
be factorized along G as it is given in (2.2) for general TAN models. We will use the probability
facctorizaton for model assessment and updating algorithms.

3.2 Model Assessment/Validation

With the previous developmental stages, a completely specified TAN is obtained. However before the
TAN can be used in practice, its accuracy and consistency for modeling the credit risk have to be
established. Assessment of the sensitivity to the apriori assumptions must be also evaluated.

The problem of assessing the reliability of the constructed BN model consists of two parts : the
first one is how to measure the degree of association between each variable Xi and its parents Π[i] in
the TAN, and the second one is how to determine whether an edge connecting Xi to Xj provides an
appreciable amount of information, i.e. is significant.

The main idea underlying the approach we shall specialize here is based on the mutual information
measure that captures the mutual dependency across the set of variables Xi and their parents Π[i],
given the factorization of probability distribution of {X1, . . . , Xd} along the graph tree G, and is
defined as

MIXi,Π[i] =
∑
x,y

PXi,Π[i](x, y) log
( PXi,Π[i](x, y)

PXi(x) · PΠ[i](y)

)
,
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where PXi,Π[i](x, y) represents the joint probability distribution of Xi and its parent variables Π[i],
and PXi(x) and PΠ[i](y) are marginal distributions of Xi and Π[i]. Various properties of MIXi,Π[i] are
studied in in Friedman et al (1997) and de Campos (2006) in the context of BN model learning. In
order to simplify calculations of the joint distributions of Xi and Π[i] we exploit the recursive property
of the mutual information (Friedman et al (1997): MIX,Y,Z = MIX,Z + MIX,Y |Z where the second
term,

MIX,Y |Z =
∑
x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)
(3.1)

is called conditional mutual information measuring the information that Y provides on X when the
value of Z = z is known. Let’s assume now that Π[i] = {Xi1 , . . . , Xiq}, i.e. the variable Xi has q
parents, and then apply the recursive property to MIXi,Π[i] . This gives

MIXi,Π[i] = MIXi,Xi1 ,...,Xiq−1
+ MIXi,Xiq |Xi1 ,...,Xiq−1

= (3.2)

= MIXi,Xi1 ,...,Xiq−2
+ MIXi,Xiq−1 |Xi1 ,...,Xiq−2

+ MIXi,Xiq |Xi1 ,...,Xiq−1
= . . .

= MIXi,Xi1
+

q∑
k=2

MIXi,Xik
|Xi1 ,...,Xik−1

.

The first term in the final expression of the decomposition above can be calculated using the esti-
mates of the two dimensional probability distributions P (xi, xi1) as well as the marginal distributions
P (xi) and P (xi1). It will be interpreted as the degree of interaction between the variables Xi and Xi1 ,
i.e. by inserting the edge Xi1 → Xi. If we insert the edge Xi2 → Xi given that Xi1 is already a parent
of Xi, the interaction degree between Xi2 and Xi is measured the conditional mutual information
MIXi,Xi2 |Xi1

.
Using the interpretation of the mutual information given above one can see that MIXi,Π[i] is null

when the two sets of variables are independent and maximum when they are functionally dependent.
We use the decompositions (3.1) and (3.2) to assess the reliability of the edges inserted according to
Table 2 for the group of related borrowers.

In order to assess the strength of dependence between the nodes in the TBN graph we need to
compute MIXi,Xj for d ·(d−1) different pairs of indices. We begin by analysing the edges in G relating
the bank, Y to financial institutes Si, i = 1, . . . , 5 and to private enterprises Tj , j = 1, . . . , 5, and
estimate the strength of these interactions assuming only one parent variable for both Si and Tj , i.e.
Π[i] = {Y } and Π[j] = {Y } for Si and Tj , respectively. Using the first term in the right-hand side of
the decomposition (3.2), we compute the numbers

MISi,Y =
∑

x

∑
y

PSi,Y (x, y) log
PSi,Y (x, y)

PSi(x)PY (y)
, (3.3)

for each Si, where the marginal distribution of Y is specified in Table 2. The marginal distribution of
Si is calculated using the total probability theorem as

PSi(x) =
∑

y∈{b,nb}

PY (y) · PSi|Y (x|y), x ∈ {s, ns}, i = 1, . . . , 5. (3.4)

By analogy to (3.3) and (3.4) we can also compute MITi,Y marginal distribution of Ti. Both marginal
distributions of Si and Tj are presented in Table 4.

PSi(x) x = s x = ns

S1 0.45 0.55
S2 0.45 0.55
S3 0.45 0.55
S4 0.45 0.55
S5 0.45 0.55

PTi(x) x = s x = ns
T1 0.4 0.6
T2 0.45 0.55
T3 0.425 0.575
T4 0.55 0.45
T5 0.45 0.55
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Table 3. Marginal probability distributions for Si and Tj .

The joint distribution of Si, Y is calculated using the table of conditional distributions of Si|Y and
marginal distribution of Y as

PSi,Y (x, y) = PSi|Y (x|y) · PY (y). (3.5)

The same technique is used for calculating PTi,Y (x, y). The resulting values of MISi,Y and MITi,Y

are given in Table 4, indicating much weaker direct interactions among Y and Tis than among Y and
Sis.

i 1 2 3 4 5
MISi,Y 0.1325 0.1325 0.0462 0.2753 0.0462
MITi,Y 0.0211 0.0051 0.0116 0.0051 0.0463

Table 4. Mutual information MISi,Y and MITi,Y .

In order to capture the relationship between Si and Ti given the root variable Y , we focus on the
conditional mutual information between X and its parent variables ΠX given a set of variables Z and
explore the second term of the decomposition (see the decomposition of MIX,Y |Z , given by (3.2)).
Observe that for the TAN graph structure MIXi,Π[i]|Z can be calculated by

MIXi,Π[i]|Z =
∑

z

(
P (z)

∑
x,xΠ[i]

P (x, xΠ[i] |z) · log
( P (x, xΠ[i] |z)

P (x|z)P (xΠ[i] |z)

))
. (3.6)

see Friedman et al. (1997). Given a root variable Y , the conditional mutual information between Ti

and Sj for all pairs of indices (i, j) is computed using (3.6). The resulting values of MITi,Sj |Y are
summarised in the following table

MISi,Tj |Y T1 T2 T3 T4 T5

S1 0 0 0 0.0670 0
S2 0 0.0344 0 0 0.0419
S3 0.0515 0 0.0484 0 0
S4 0 0 0 0 0
S5 0 0 0 0 0

Table 5. Conditional mutual information between Ti and Sj given Y .

Now the joint mutual information MI for the whole TAN is obtained by emerging Tables 4 and 5 are
recorded in Table 6.

Ti Π[i] MITi,Π[i]

T1 (S3, Y ) 0.0726
(Si, Y ), i 6= 3 0.021

T2 (S2, Y ) 0.0395
(Si, Y ), i 6= 2 0.0051

T3 (S3, Y ) 0.060
(Si, Y ) i 6= 3 0.0116

T4 (S1, Y ) 0.0721
(Si, Y ), i 6= 1 0.0051

T5 (S2, Y ) 0.0882
(Si, Y ), i 6= 2 0.0463

Table 6. Joint mutual information MITi,Π[i] for the whole TAN.
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In order to filter out the non-reliable edges from G different strategies can be considered. The
simplest one is to adopt a threshold based approach that uses the average mutual information, M̂IS,T |Y
as a cut-off value, where the averaging is performed over all possible edges between T and S. The
values of MISi,Tj |Y that are higher than the cut-off are considered to be reliable. The data from
Table 5) gives M̂IS,T |Y = 0.0097, which indicates that all the edges that were specified in the TAN by
expert knowledge are reliable. The reliability of the edges connecting Y , Ti and Sj , can be estimated
by the joint mutual information whose average value yields M̂IS,T,Y = 0.0276. All the triple edges
connecting Y, Si, Tj in the Figure 3 have the value of joint mutual information higher than M̂IS,T,Y

and are therefore reliable. Observe that some of evaluated edges appear to be reliable even though
they have not been induced by the experts. For example, the connection between Y , S1 and T5 appear
to be stronger than the average M̂IS,T,Y which is due to the strong direct connection between Y and
T5 and no conditional connection between S1 and T5, i.e.

MIS1,T5,Y = MIT5,Y + MIS1,T5|Y = 0.0463 + 0 = 0.0463.

The more subtle strategy to assess the edges reliability is based on so-called permutation test, see
e.g. []. We explore the empirical distribution of estimates of conditional and joint mutual information
for permuted data to judge whether the calculated values of MIS,T |Y and MIS,T,Y are higher than we
would expect when connecting the nodes in G by chance only. We perform 1000 bootstrap replicates
for the data given in Tables 5 and 6 and apply the kernel smoothing density technique, (see []) to
approximate the empirical distributions of the conditional and joint information. The results given in
Figure 4 (see the legend to Figure 4 for detailed of the density approximation) and are very satisfactory.
Values in the range of MIS,T |Y and MIS,T,Y which we obtain from the original TAN probability
distribution were never achieved with any of the permuted values of MIs. This corresponds to an
empirical p-value of zero in the permutation test for our entire measure of edge reliability based on
mutual information. We thus can surely reject the hypothesis that the values of MIS,T |Y and MIS,T,Y

found on the original probability distribution tables are irrelevant and just a noise artifact. Moreover,
we observe that the spread of permuted values of both conditional and joint mutual information is
much higher, clearly exceeding the typical values of MIS,T |Y and MIS,T,Y , see Tables 5 and 6.
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Figure 4: Kernel density approximation of the average values of MIS,T |Y and MIS,T,Y computed by a normal kernel
smoother based on 1000 bootstrap replicates from Table 5 (top panel) and from Table 6 (bottom panel), respectively.
the kernel-smoothing window. The bandwidth of the kernel-smoothing window was chosen to be optimal for estimating
normal densities. The number of equally spaced points in both bootstrap samples were equal to 100.

In summary, we conclude that our assessment algorithm assigns relatively high values of mutual
information to the edges in G representing a group of related borrowers, so that in this sense the
induced TAN is a reliable model that can be very accessible to identify and control threat from
concentration of credit exposures.
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3.3 Updating Algorithms and Stress Testing

In order to evaluate the TAN output under extreme unfavorable changes in the economical conditions
of the group of related borrowers and the implications to the bank, we focus on the stress testing
technique. Here we run a number of hypothetical ”what if?” scenarios on the constructed model
under various assumptions about the prior probability of insolvency for a specific set nodes in G.

Firstly we look at the case when only one of FI’s, for example S2 declared insolvensy, i.e. the
credit risk analyst observed S2 = ns. To update the prior distribution of Y we use Bayes theorem
given by (2.4) and get the the posterior probability of Y |S2 as

PY |S2(b|ns) =
PS2|Y (ns|b) · PY (b)

PS2(b)
=

0.8 · 0.5
0.55

= 0.73.

Hence, changing in the solvency status of just one FI, S2 seriously increase the bankruptcy risk from
the prior value of 0.5 to posterior estimator of 0.73. The next scenario demonstrates how to capture
the effect of concentration of the credit risk exposures due to insolvency of two FIs. Given that the
second and forth FIs are classified by the risk analyst as insolvent, the posterior credit risk can be
updated using TAN graph structure, i.e. using the conditional independence of S2 and S4 nodes,
given the root Y . This yields

PY |S2,S4(b|ns, ns) =
PY (b)PS2|Y (ns|b)PS4|Y (ns|b)∑

y∈{b,nb} PY (y)PS2|Y (ns|y)PS4|Y (ns|y)
= 0.923,

which implies that the increase of the bank posterior bankruptcy risk from 0.5 to 0.923 in the case of
insolvency of these two FIs is much more pronounced.

The effect of insolvency of the private enterprises and single borrowers on the risk of bankruptcy
can also be investigated. Let’s assume that T2 and T5 declared insolvency. Observe that due to the
TAN structure, both T2 and T5 have the same set of parents ΠT

[2] = ΠT
[5] = {Y, S2}. Using (2.5) and

the probability factorization for TAN models from the Section 2.1 we get

PY |T2,T5(b|ns, ns) =

∑
x∈{s,ns} PT2|S2(ns|x)PT5|S2(ns|x)PS2|Y (x|b)PY (b)∑

y∈{b,nb}
∑

x∈{s,ns} PT2|S2(ns|x)PT5|S2(ns|x)PS2|Y (x|y)PY (y)
= 0.581.

Notice that T2 and T3 are related to Y through their super parents, Sis, the increase of the credit risk
from its prior value of 0.5 to the posterior estimation, 0.581, is not that serious.

In the group of related borrowers, the private enterprises and single borrowers could have different
parents among the FI’s, like for example T2 and T3 whose set of parents are ΠT

[2] = {Y, S2} and
ΠT

[3] = {Y, S3}, respectively, that might be interesting to run a scenario on the TAN model under
assumptions that T2 = ns, T3 = ns, i.e. two private borrowers declared unsolvency. The posterior risk
for this case will be

PY |T2,T3(b|ns, ns) =
PT2|Y (ns|b)PT3|Y (ns|b)PY (b)∑

y∈{b,nb} PT2|Y (ns|y)PT3|Y (ns|y)PY (y)
= 0.6094,

and the increase is observed from 0.5 to the posterior value of 0.6094.
To update the local risk concentration, i.e. posterior distribution of Si, we consider the scenario

where T2 and T5 become insolvent. The posterior insolvency risk for the parent FI, S2, is calculated
by

PS2|T2,T5(ns|ns, ns) =
PT2|S2(ns|ns)PT5|S2(ns|ns)PS2(ns)∑

x∈{s,ns} PT2|S2(ns|x)PT5|S2(ns|x)PS2(x)
= 0.7233.

The increase of the posterior risk of insolvency of S2 from 0.55 (see Table 4) to 0.7233. Observe
that the marginal distribution of Si is not a prior distribution in the same sense as that for Y . This
distribution was calculated using the prior distribution of Y , but not specified a priori by experts.
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Clearly, these scenarios are by the problem statement relatively simple. However,in practice, by
using a tool such as the induced TAN model, our approach captures ”storing-up” of the bank posterior
credit risk which arises if the borrowers in one portfolio have a particularly strong correlations with
one another.

4 Conclusions and scope for future

The primary contribution of this study has been to demonstrate that the BN methodology has a
number of advantages for adapting it to modeling of credit concentration risk. The main advantage
of BNs is their ability to integrate uncertain expert knowledge (e.g. expert estimates of the risk
exposure of a group of related borrowers) with data . This potentially provides economists with the
ability to update prior knowledge with new information as it is learned, and to built a solution of
increasing scope and complexity. Another advantage of the BN modeling approach is that both the
graph structure and probability parameter estimate can easily be updated on a periodic basis, thereby
taking into account changes in the borrowers credit strength and economic conditions.

Two types of BN models, TAN and a special case of k-BN were explored and shown to be the
most suitable graphs for capturing and visually representing aggregating of credit risk for a group of
related borrowers. The established models can be applied to forming posterior credit risks based on
the evidence observed, update marginal and conditional probability distributions of each risk related
node of the BN graph, and simulate scenarios for stress testing. These models are now successfully
implemented in the Ukrainian bank as a part of the global program on improvement of monitoring
and management of concentration risk in the banking industry of Ukraine.

The measure of mutual information suggested in this study for model assessment is also applicable
to learning graph structure directly from data, i.e. without any expert information on a tree dependent
probability distribution, see e.g. Pérez et al(2006), Ekdahl and Koski (2006). Given the set of nodes
and the relevant sample frequencies, the procedure of structure learning can be started from computing
the mutual information between all pairs of nodes, and then the best tree structure is selected as the
one that gives the maximum overall mutual information.

Current models were based on the binary graphs and were structurally relatively simple networks
that can be extended a multinomial model which is more precise instrument for quantifying the risk
exposure. Furthermore, introducing nodes with continuous probability distributions and increasing
the graph complexity allows for applying the BN methodology for the modeling of more sophisticated
multiple correlations across exposures in management of concentration risk.
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