Problem of Missing Data in Census Who Are the Non-Response Respondents

Jan Hora, Jiří Grim

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Statistics, 2009, Prague

Outline

1 Standard methods for census results publication

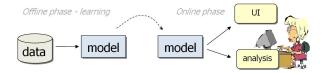
- 2 Data reproduction by means of a statistical model
 - Basic idea
 - Definition
- 3 Experimental results Czech census 2001
 - Missing data
 - Model calculation and it's accuracy
 - Error distribution

4 Demo - Interactive data presentation

5 Conclusions

Standard methods for census results publication

Basic problem: Completeness and accuracy vs. Privacy


- Task 1: Complex and accurate representation of the census result
- Task 2: Preserve anonymity of single persons
- Problem: Even anonymized query form could be identified

Aggregated data, Tables

perfect accuracy limited information amount published

Anonymized sets of microdata (1-10% of the original data set) unlimited possibilities for query formulation anonymization required, limited distribution, limited accuracy

Data reproduction by means of a statistical model

Statistical model as a knowledge base for probabilistic expert system

- Model is "trained" to represent the original data set
- Model is used instead of the original data
- Statistical properties represented without the original data
- Accuracy decreases with subpopulation size

Principle Definition

Statistical model - distribution mixture

Census data .. N-dimensional discrete finite data set ${\cal S}$ **Query-form** .. N-dimensional vector ${\bf x}$ of answers

Assumption

- x .. random vector,
- ${\mathcal S}$.. set of iid observations of ${\boldsymbol x},$

 $P(\mathbf{x})$ can be approximated by a distribution mixture.

$$P(\mathbf{x}) = \sum_{m=1}^{M} w_m F(\mathbf{x}|m) = \sum_{m=1}^{M} w_m \prod_{n=1}^{N} p_n(x_n|m)$$

$$\begin{array}{lll} M & .. \text{ component count} \\ w_m & .. \text{ weight of the m-th component} \\ F(\mathbf{x}|m) & .. \text{ conditional distribution} \\ p_n(.|m) & .. \text{ marginal conditional distribution of } x_n \end{array}$$

Census and Missing data

- N = 24 questions, $|\mathcal{S}| = 10230060$ respondents
- 1524240 incomplete records, 2933427 total non-response

	Text of question (name of variable)	Number of values	Non-response in %	Shannon entropy in %
1.	Region of residence	14	0.00	96.88
2.	Type of residence	3	0.00	32.92
3.	Economic activity	10	0.80	67.80
4.	Birth place (relatively)	6	1.95	74.65
5.	Religion	6	0.00	60.57
б.	Occupation type	14	3.89	68.33
7.	Sex	2	0.00	99.95
8.	Marital status	4	0.55	81.01
9.	Education	14	1.11	78.04
10.	Age	9	0.03	96.09
11.	Category of flat	5	0.53	27.81
12.	Bathroom	5	0.59	14.02
13.	Size of flat	7	0.64	80.62
14.	Internet and PC	4	2.85	49.11
15.	Legal relation to flat	9	0.39	72.43
16.	Gas supply	3	0.78	64.54
17.	Number of rooms over 8m ²	7	0.64	80.57
18.	Number of cars in household	4	3.39	71.32
19.	Number of persons in flat	6	0.00	93.79
20.	Vacational property	6	7.45	42.10
21.	Telephone in flat	5	1.80	80.88
22.	Water supply	4	0.35	8.02
23.	Type of heating	6	0.53	74.81
24.	Toilet	6	0.50	16.73

Two ways of handling the missing data

I. Extended model - non-response as a new possible answer

- Simple solution
- Non-responding respondents form specific subpopulations
- $\bullet \ \Rightarrow \text{ analysis of their properties}$

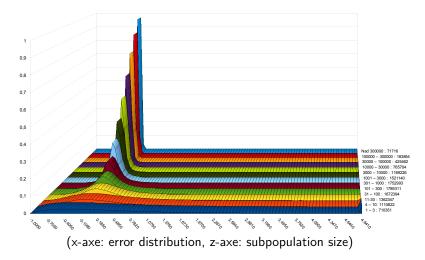
II. Substitution - missing values filling-up

- Model estimated from incomplete data
- Estimated model used for missing data substitution
- Correct substitution cca 73%

Example - Model accuracy

Czech census 2001 - Model with M = 15000 components

Used model	Model with	Extended model
	substituted values	with missing values
Mean relative error in %:	4.07	4.10
Standard deviation of the relative error:	6.33	5.83
Maximum relative error of the model in %:	240.84	250.90
Number of relative errors exceeding 100%:	925	1037
Mean absolute error:	470	459
Standard deviation of the absolute error:	951	791
Maximum absolute error of the model:	45779	56808
Number of combinations tested:	3503448	3895873


Validation set A: Combinations of up to 4 answers greater than 1612

Mean relative error:

$$\epsilon_R(\mathcal{A}) = \frac{1}{|\mathcal{A}|} \sum_{A \in \mathcal{A}} \frac{|\hat{P}(A) - P(A)|}{\hat{P}(A)} \qquad P(A).. \text{ original size, } \hat{P}(A) .. \text{ estimated size}$$

Example - Accuracy depending on the subpopulation size

Relative error distribution according to the subpopulation size

Interactive data presentation

Conclusions

Method characteristics

- Guaranteed anonymity
- Accuracy comparable to microdata sets
- Successfully implemented for Czech Census 2001

Non-Response handling

- Non-Responding respondents analysis
- Filling-up the missing values

Thank You for Attention

Demo application: http://ro.utia.cas.cz/dem.html

Jan Hora, *hora@utia.cas.cz* Jiří Grim, *grim@utia.cas.cz*

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic