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Abstract

Pricing is a quite complex endeavour, understood as a process with beginning and end where several different 
tasks have to be executed in a certain order. Set the price for some individual policy can be considered an art, 
taking into consideration various features of policyholder or the insured object. Actually, approach performed 
by insurance companies, is necessary to apply different premiums depending on the degree of risk because 
of presence of heterogeneity within insurance portfolio, which could lead to the appearance of asymmetric 
information.

The aim of this paper is to present the methodology of segmented pricing model with generalized linear 
models, known as GLMs, for setting the risk premium. Nowadays, the GLMs are widely recognized as the industry 
standard method for pricing motor, the other personal lines and the retail insurance in the European Union.

INTRODUCTION
Actuaries use many statistical methods to measure risk in process of setting the risk premium. Practically 
the most widely method used in practise is the regression analysis. Linear regression had been applied 
until the 1980s using various transformations of predicted variable. Nowadays, generalized linear models 
or GLMs for short are preferably applied. Restrictions in linear regression are discussed by (Anderson 
et al., 2007). The comprehensive reference for GLMs in actuarial field is (McCullagh and Nelder, 1989; 
Fahrmair and Tutz, 1996; Mildenhall, 1999; Kaas et al., 2001). Valecký (2017, p. 451) states that more 
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applications of the GLMs occurred mostly after the 1990s when the insurance market was being deregulated 
in many countries and the models were used to perform tariff analysis. Even though the GLMs are used 
mainly in the non-life insurance practise, Haberman and Renshaw (1996) referred to their wide use in 
the actuarial practice, including life insurance (survival data analysis – SDA, health insurance modelling 
and mortality modelling). As David (2015) indicates, the GLMs allow modelling of non-linear behaviour 
and non-Gaussian distribution of residuals, which is very useful non-life insurance analysis. A random 
component (error term) in an ordinary linear model is assumed to be normally distributed. However, 
when the claim frequency (count of the claims per exposure) and the claim severity (average cost per 
claim) are modelled this condition is not fulfilled. For that reason, the GLMs are suitable for analysis 
with non-normal data, i.e. insurance data because the error term can follow the number of different 
distributions from the exponential dispersion family – EDF, which generalizes normal distribution used 
in the linear models. The Poisson distribution belongs to this family and represents the main tool for 
the claim frequency modelling meanwhile Gamma distribution allows econometric modelling of the 
claim costs (Ewald and Wang, 2015) and (Duan et al., 2018). It might be considered using a Tweedie 
model to analyze the risk premium directly (see Xacur and Garrido, 2015; Frees et al., 2016; Jörgensen 
and Souza, 1994).

In general, two approaches are commonly used to calculate the risk premium in the non-life insurance. 
In the first case, the risk premium is modelled directly. The second case describe the standard GLMs 
analysis with separated analysis for the claim frequency and severity. Goldburd et al. (2016) point out 
the reason for this separation where the claim frequency is more stable than the claim severity and much 
more predictive factors are associated with the claim frequency. Such a separate analysis represents greater 
accuracy and offers deeper insights to the risk w.r.t regression coefficients. 

Here, both the claims count, and the claims amount are assumed to be independent in case of the 
separate claim frequency and claim severity analysis. When this fundamental assumption is not fulfilled, 
authors Shi et al. (2015) or Garrido et al. (2016) discuss about this problem. Charpentier and Denuit 
(2005) also prefer separate analyses for claim frequency and claim severity as the benefit of such approach 
is visible in fact that both models (frequency and severity) can be affected by different various factors. 
Mentioned facts give us the reason why to choose separate analysis in the GLMs for calculating the risk 
premium in motor hull insurance in Slovakia. 

The GLMs are an efficient and reliable tool used in various fields of predictive modelling. According 
to (Xie and Lawniczak, 2018, p. 2) the main reason for the prevalence of GLMs is that it enables  
a simultaneous modelling of all possible risk factors as well as the determination of the retention of risk 
factors in the model. 

The main effort of this paper is not only to estimate the claim frequency and claim severity and then 
set price of transfer risk from the insured to an insurer, but also to identify relevant risk factors as well  
as to quantify their impact in the claim frequency, claim severity and also on the expected loss per exposure. 

Data on which the research was based are real and comes from an unnamed insurance company 
operating in the Slovak insurance market. All calculations in this paper have been realized in R environment 
(R Core Team, 2019) using glm() function and packages data.table (Dowle et al., 2015) and MASS 
(Venables et. al., 2002).

1 METHODS OF ANALYSIS 
The expected loss (also known as a risk premium) consists of the claim frequency and claim severity that 
are in the multiplicative relation:

Risk Premium = Frequency . Severity (1)
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The frequency refers to the number of claims that an insurer anticipates will occur for a specific 
risk over a given time period. The severity represents the average cost of claims for specific 
risk. This article focuses on separate modelling of the claim frequency and claim severity using 
generalized linear models and determining the risk premium. This part of the paper provides 
a brief description of the methodology of sophisticated mathematical and statistical methods 
associated with the GLMs.

1.1 Theoretical framework of Generalized linear models 
Generalized linear models include a wide set of statistical models consisting of three keystone elements 
– random component, linear predictor and the link function. 

A random component refers to the conditional distribution of the response variable Y given the values 
of the explanatory variables in the model. Nelder and Wedderburn (1972) present the basics of the GLMs 
theory and declare that distribution of Y with independent observations yi (i = 1, 2, …, n) is a member  
of an exponential dispersion family. Exponential dispersion family, shortly EDF, has the probability 
density function in the following form:

 (2)

where θi and ϕ are the parameters, θi is called canonical or natural parameter and ϕ is a dispersion 
parameter (Agresti, 2015; Kafková and Křivánková, 2014). So called cumulant function a(θi ) is assumed 
twice differentiable, where the first derivative is invertible. EDF includes the univariate Bernoulli, 
binomial, Poisson, geometric, Gamma, normal, inverse Gaussian, lognormal, Rayleigh, and von Mises 
distributions (Forbes et al., 2011).

The claim severity is modelled by two commonly used distributions the Gamma and inverse Gaussian 
distribution. Both these distributions are right-skewed with a lower bound at zero. According to Goldburd 
et al. (2016) inverse Gaussian compared to the Gamma distribution has a sharper peak and a wider 
tail and is therefore appropriate for the situations where the skewness of the severity curve is expected  
to be more extreme.

The claim frequency is modelled by the GLMs with Poisson noise. Some members of EDF such  
as Poisson and Bernoulli distribution have the distribution determined by the mean. When fitting models 
to data with binary or count dependent variables, it is common to observe that variance exceeds and 
anticipated by the fit of the mean parameters. This phenomenon is known as overdispersion (Edward, 
2010). One way to check for and deal with it is to run negative binomial distribution or overdispersed 
Poisson distribution (Valecký, 2016; Ohlsson and Johansson, 2010). There are also several probabilistic 
models available to explain this phenomenon, depending on the application on hand. For a more detailed 
inventory see McCullagh and Nelder (1989).

A linear predictor is a linear function of the regressors:

 (3)

where:
β is p × 1 vector of model parameters (p = k + 1) including intercept β0 and the regression coefficients 
βj(j = 1, 2, …, k),
X is n × p matrix of the regressors (known from the classical regression) and xij is i-th observation  
of j-th regressor Xj.
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The regressor can be expressed as quantitative explanatory variable, transformation of quantitative 
explanatory variable, e.g. polynomial regressor, dummy variable (coding the particular categorical 
variable), interaction, etc. (see Wooldridge, 2013).

The link function g(.) is strictly monotone and twice differentiable. This fundamental object links the 
mean of the response variable to the linear predictor through:

g(μ) = Xβ  or  g(μi) = ηi , (4)

where:
μ = E(y)  or  μi = E(yi) ,
y is n × 1 vector of observations of target variable Y (called also response variable, explained variable  
or dependent variable),
μ is n × 1 vector of expected values of the elements of y.

The link function that transforms μi to the natural parameter θi of distribution from exponential family 
is called canonical (or natural) link function (Agresti, 2015; Fox, 2015; Littell et al., 2010).

A maximum likelihood method is used to estimate the regression parameters β in Formula (4)  
(De Jong and Heller, 2008; Littell et al., 2010). As a result of this method is system of equations:

(XTWX)β = XTWy*, (5)

where:
W = DV–1D, whereby V = diag[ϕ . Var(μ)] and D = diag[ ] is n × n diagonal matrix whose elements 

are derivates of the elements of η with respect to μ and Var(μ) is a covariance matrix of μ.
 [more detailed in (Littell et al., 2010; McCullagh and Nelder, 1989)].

We note that for the normal error model is V = σ2
εI where W is the unit matrix and system (5)  

is reduced to the well-known system of normal equations, that we can estimate parameters of classical 
linear regression model (Agresti, 2015; Littell et al., 2010).  In general, the system of equations from (5)  
is nonlinear in , therefore the iterative methods are used for solving nonlinear equations such as Newton-
Raphson method using a Hessian matrix itself and Fisher scoring method which uses expected values  
of Hessian matrix (Allison, 2012; Agresti, 2015).

1.2 Assessment of impact of explanatory variables on target variable and model selection  
After estimating the generalized linear model, it is important to verify its statistical significance and 
verify if influence of the individual explanatory variables on probability target variable is significant. 
The significance of model is revealed by zero-hypothesis test β = (β1  β2  … βk) = 0T against an alternative 
hypothesis – at least one regression coefficient should not be zero, while three different chi-square statistics 
are prevalently used (Likelihood ratio, Score statistics, Wald statistics). Allison (2012) discusses differences 
between mentioned statistical methods and notes that in the large samples, there is no reason to prefer 
any of these statistics and they will be quite close in value.

In order to validate the significance of the explanatory variable influence, a Wald test is used. It tests 
the zero-hypothesis showing that the respective explanatory variable does not affect the probability of 
occurrence of explored event. To verify hypothesis, Wald statistic

 (6)
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is used, where  is the vector of regression coefficients estimates that stand at dummy variables for the 
respective factor (categorical explanatory variable) and  is the variance-covariance matrix of . Wald 
statistic has asymptotically χ2 distribution with degrees of freedom equal to the number of parameters 
estimated for a given effect. A special case of the test above is the Wald test, which verifies the statistical 
significance of one regression coefficient. In this case Wald statistics is asymptotically distributed as χ2 
with 1 degree of freedom. The test statistic has an equation:

 (7)

where  is an estimated standard error of the j-th estimated coefficient.
When the process of the model building starts, there is a wide set of potential regressors and not all  

of them have significant impact on the dependent variable. It is obvious to use methods for variable 
selection, namely, the stepwise regression (see Draper and Smith, 1981; Hebák et al., 2005). In the stepwise 
regression, the selection procedure is automatically performed by statistical packages. In the practical 
part, it is used one of the main approaches of the stepwise selection known as backward elimination (see 
Agresti, 2015).

To evaluate how well the model fits the experience criteria AIC (Akaike information criterion) and 
BIC (Bayesian information criterion) are used. These measures are based on logarithmic transformation 
of the likelihood function (see Kim and Timm, 2006; Agresti, 2015). Preferred model is considered have 
with the lowest AIC and BIC, respectively. As state (De Jong and Heller, 2008, p. 63) BIC applies a greater 
penalty for the number of the parameters. When number of observations is large, as it is in most of cases 
of insurance data sets, the BIC tends to select the model which most of analysts consider too simple.  
In this case the AIC is preferable.

2 DATA PROCESSING AND MODEL BUILDING 
In this part, we demonstrate practical usage of GLMs in actuarial practice which have been described 
in previous sections of this paper. We will try to set price of a non-life insurance policy, taking into 
consideration various properties of the insured object and policyholder as well. In this empirical study, 
we will go through models for short-term insurance schemes based on the Slovak market´s conditions. 
The study in this paper works with a very basic feature of the portfolio of risks – heterogeneity, which 
means that risks generate different values of claims. Consequently, charging each policy with the same 
premium (flat rate) is both unjust and uncompetitive. Therefore, we will try to classify each risk into the 
homogeneous risk groups where the ith risk has the same risk premium. Basic assumption that will give 
foundation to our statistical models is policy independence. This means that independence between 
random variables Y1, …, Yn is made in modelling the value of single claims and in the number of claims 
as well. Presented frequency-severity models will decompose the aggregate claim amount for a single 
risk into two parts, where the frequency part examines the number of claims by Poisson regression,  
the severity part by the GLMs Gamma regression. The R software will be used to calculate and analyse 
the results of these different multiplicative models.

2.1 Motor hull insurance data and descriptive analysis  
Before the modelling it is useful to provide certain preliminary analyses, such as data checks, identification 
of observations with negative claim counts, zero or negative exposures, etc. The portfolio D consists  
of  n = 91 685 car insurance policies for which we have features information xi ϵ X and exposure - years 
at risk information, denotes as vi ϵ [0; 1], for i = 1, 2, …, n. Nature of the data comprises a Slovak motor 
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hull insurance with corresponding claim sizes and counts for calendar year 2018. Now, we briefly describe 
the list of variables in our dataset  D: 

• ID profile: represents unique identifier; policy number;
• Claim.No: number of claims which occurred on each policy;
• Claims: total claim cost per every policy;
• Policyholder_Age: the owners age in years, between 0 and 91, non-linear continuous feature portioned 

as nominal categorical variables;
• Vehicle_Age: age of cars in years, narrowly defined categorical factor;
• Policy_Exposure: the exposure is widely applied in non-life pricing. In order to illustrate this concept, 

we take GLM for the frequency claims. Policies that begin in a given calendar last year until the 
end of the coverage period. This period is longer for annual contracts than for short-term policies, 
which results in a higher number of expected claims for longer contracts. Therefore, it is necessary 
to include this effect in the model as exposure with the use of weights;

• Region: regional divisions of Slovakia according to the company´s internal policy, categorical 
feature with 11 labels;

• B-M Class: bonus class, taking values for bonus from 0 to 7 and for malus from 1 to 2, with  
the reference level 0;

• Vehicle_Engine_Volume: represents engine volume of car, continuous feature;
• Total Sum_Insured (TSI): specified car value which represents the upper limit of what would  

be pay out for the claim;
• Power: power of car, non-linear continuous feature split as categorical variables;
• Payment_Frequency: expresses the frequency of premium payments (payment option is 1,2,4 and 12);
• Vehicle_Weight: weight of car, non-linear continuous feature portioned as nominal categorical variable;
• Policyholder_entity: categorical variable which can obtain 2 values;
• Mileage_per_Year: total length in miles per given period (calendar year);
• Deductible_group: policyholders can choose the excess at level that exploits reduction in premium, 

categorical variable.  
In the next step, we provide a short summary of the data D. Since the policy number is not considered 

to be an explanatory variable, we drop this feature from all our next considerations.

In Table 1 you can be see the distribution of the observed claims (Ni)1≤i≤n across the whole portfolio 
of our dataset D with the attributable policy exposure.  We note that 86.89% of the policies don’t have  
a claim. In practice, this claim imbalance can often causes difficulties in the model calibration. Next, we 
provide helpful preliminary analysis to determine distribution of the key data items to investigate any 
problems or unfamiliar features prior the modelling. This concerns the distributions for claim counts and 
for the claim severity. Typical claim distribution is shown in Figure 1 (lhs) and in Figure 2.

Table 1 Split of portfolio w.r.t. number of claims and the severity claims 

# of claims 0 1 2 3 4 5 6 7 8 9 10 11

# of policies 79 667 8 667 2 715 285 244 93 7 2 2 1 1 1

# of policies in % 86.89 9.45 2.96 0.31 0.27 0.10 0.01 0 0 0 0 0

Total exposures 40 243 5 256 1 741 182 171 65 4 1.60 1.63 0.96 0.98 0.75

Source: Own construction



457

99 (4)STATISTIKA 2019

The years at risk Policy_Exposure is illustrated in Figure 1 (lhs and middle). For this feature, we 
have following properties mini vi = 0.1 and maxi vi = 1, that is, minimal time insured in our portfolio  
is 36.5 days and the maximal insurance time is 1 year. The average insured time is represented  
as ∑i vi/n = 0.3461, which corresponds to 126 days. Median time insured is 183 days and only 35.33%  
of policies are in force the whole year.

The heavy tail of the severity distribution is obvious. The average claim size of whole portfolio  
is 1 300.87 EUR. In practise, when the severity is modelled, it is often useful to provide a large loss 
threshold to certain claims. This helps to assess the possible thresholds. Presented study does not work 
with large claims in the dataset D.

Before modelling, it is necessary to investigate if and how the explanatory variables should be 
categorized, and if some of variables should be modelled as the continuous component. Some features 
used in our models are (highly) non-linear which does not support the log-linear assumption. This is 
certainly true for the components like policyholder age, vehicle age, vehicle power and volume, etc. Our 
approach, for these continuous feature components is to group values into intervals, where treated values 
in the same interval are identical. This approach is based purely on the expert judgement. Next Table 2  
shows final predictors with chosen categorization used in presented risk frequency-severity model.  
In GLMs, it is advised to select the level with maximum exposure as reference for each predictor, because 

Figure 1 Histogram (lhs) and (middle) boxplot of the years at risk, (rhs) histogram of frequencies of whole portfolio dataset D

Figure 2 Histogram of empirical severity (lhs) and histogram of truncated empirical severity over the interval (0; 8 000]

Source: Own construction, customized in R

Source: Own construction, customized in R

Distribution of claim counts

Distribution of empirical severity

average claim size severity average claim size severity – truncated

Distribution of empirical severity

Distribution of claim countsBoxplot of exposures
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it minimizes the standard errors of parameter estimates. The sign ® in Table 2 refers to the reference 
level of the particular predictor.

2.2 Model building and validation  
In previous chapter we started with descriptive statistics on the motor hull portfolio and explanatory 
data to gain insight on behaviour of the dataset with respect to the number of claims and its subsets with 
respect to the explanatory variables. As already stated in the last chapter, we will only use 10 predictors 
in our tarification model; an intercept will be included. 

The most frequently used is the backward elimination process, where on intends to reduce the 
saturated model to a complete model, meaning a model with the best explanatory terms. To begin, 
all possible variables are included in the model and then the stepwise terms are excluded, every time 
the term which p-value is bigger than a 5% significance level. The other option is to use the Wald test  
to check the statistical significance of predictors.

Table 2 The predictors used in the final step of the frequency and the severity modelling 

FR
EQ

U
EN

CY
 M

O
D

EL

Categorical Predictors # of Class Multi-level factors

Payment_Frequency 4 1, 2, 4®, 12

B-M Class 7 B0®, B1–B3, B4, B5, B6, B7, M1–M2

Region 5 R01–R04–R06–R09–R11, R02–R05–R10, R03®, R07, R08

Policyholder_Age 9 18–23, 24–27, 28–31, 32–37®, 38–44, 45–53, 54–61, 62+, LE

Vehicle_Age 9 0, 1, 2, 3, 4®, 5, 6, 7, 8+

Vehicle_Power 3 0–76®, 77–112, 133+

TSI 6 0–5 000, 5 001–10 000®, 10 001–15 000, 15 001–25 000, 25 001–35 000, 35 001+

Vehicle_Engine_Volume 5 0–1 354, 1 355–1 397®, 1 398–1480, 1 481–1 750, 1 751+

Mileage_per_Year 3 0–15 000®, 15 001–30 000, 30 001+

Deductible 4 No Deductible, ≤ 1%®, ≤ 2%, > 2%

SE
VE

RI
TY

  M
O

D
EL

B-M Class 6 B0®, B1–B2–B3, B4, B5, B6–B7, M1–M2

Region 4 R01–R07–R08, R03–R04®, R02–R05–R10, R06–R09–R11

Policyholder_Age 8 18–26®, 27–32, 33–37, 38–45, 46–55, 56–61, 62+, LE

Vehicle_Age 6 0, 1, 2, 3, 4, 5+®

Vehicle_Power 4 0–80®, 81–95, 96–124, 125+

TSI 5 0–5 000, 5 001–10 000®, 10 001–15 000, 15 001– 25 000, 25 001+

Mileage_per_Year 4 0–5 000, 5 001–10 000, 10 001–13 000®, 13 001+

Source: Own construction
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Following Table 3 shows performed Wald test to check relevance of the explanatory variables for final 
proposed risk models to explain the response variable. It was tested based on the relation (6). Variables 
Vehicle_Weight and Policyholder_entity were excluded from both frequency and severity models. Moreover, 
variables Deductible and Payment_Frequency were also removed from the severity model because  
a p-value of it is lower than a predefined level 5%. These variables do not improve significantly the quality 
of this model.

When the models were constructed and parameters were estimated (column Estimate in Table 4), 
their significance was tested by Wald test (column p-value in Table 4) defined by (7).

The estimated regression models in Table 4 will be discussed in section 3 but let us first consider 
the degree of multicollinearity. In our observational study we have many explanatory variables where 
some relations among them may imply perfect linear combinations with other predictors. In practise, 
presence of the multicollinearity, regression estimates are unstable and have high standard errors. 
Variable has a little partial effect because it is predicted well by others. Excluding a nearly redundant 
predictor can help to reduce standard errors of other estimated effects. To identify potential problem 
of the collinearity among the explanatory variables we chose according to (Agresti, 2015) variance 
inflation factors (VIF) which measure the inflation in the variances of parameter estimates due  
to collinearities in the model. AVIFj of 1 means that there is no correlation among the j-th predictor 
and remaining predictor variables, and hence the variance of βj is not inflated at all. These calculations 
are straightforward and easily comprehensible; if the value of VIF is higher than 5 there is a problematic 
multicollinearity.

Table 3 Wald test of significance of explanatory variables for risk models 

Predictors
FREQUENCY_MODEL SEVERITY_MODEL

df Chisq Pr(>Chisq) df Chisq Pr(>Chisq)

Intercept 1  702.712 < 2.2e-16        1 17 802.802 < 2.2e-16   

Payment Frequency 3    56.432    3.397e-12 - - -

B-M Class 6  577.505 < 2.2e-16     5       57.727    3.580e-11

Region 4  327.139 < 2.2e-16     3       16.361    0.0009

Policyholder Age 8  208.724 < 2.2e-16     7       64.065    2.317e-11

Vehicle Age 8  205.724 < 2.2e-16     5     129.799 < 2.2e-16    

Vehicle Power 2    24.171     5.64e-06  3       37.222    4.130e08

TSI 5  106.849 < 2.2e-16     4     195.684 < 2.2e-16    

Vehicle Engine Vol. 4    23.757    8.934e-05 - - -

Mileage per Year 2    60.868    6.062e-14 3       40.405    8.744e-09

Deductible 3 1 621.859    6.854e-12 - - -

Source: Own construction, customized in R
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In case of this empirical study, the backward selection of variables could produce inconsistent results, 
variance partitioning analyses may be unable to identify unique sources of the variation, or the parameter 
estimates may include substantial amounts of uncertainty. In our proposed risk models, we didn’t find 
any VIF value higher than 5, that is, no issue with this task.

3 RESULTS AND DISCUSSION
In this part, we present the process results of establishing the risk premium. We follow the standard process in 
GLMs analysis by separate analyses for the claim frequency and the claim severity. The authors (Ohlsson and 
Johansson, 2010) state some logical reasons for this separation. In our dataset D, we have an information about 
the number of claims and the claim costs on policy level with the duration of policy in force measured in years. 
In the Table 3 are presented the estimated regression coefficients (designated as Estimate) for each category of 
both proposed risk models, that includes all effects that explain the variation of the claim frequency and costs.

To illustrate, we give an interpretation of the value denoted as eEstimate shown in Table 4, for example, 
within the Policyholder age variable for the Frequency model. From the data in this table, we find that the age 
of the vehicle owner is a significant factor affecting the frequency or the expected number of claims during 
the year, and as the age of the owner decreases this frequency. Based on the relations (3) and (4) it is possible 
to formulate the following statements. The most risk category in the policyholder age is between the ages of 
18 and 23 (eEstimate = e0.2959 = 1.3443. For which the expected (average) number of claims during the year is 
34.43% greater than in the reference category of 32 to 37 years, and up to 68.16% (1.3443 / 0.7994) greater 
than in the least risk category 62+. The above statements are based on the assumption that the other factors 
incorporated in the regression frequency model are at the same level (ceteris paribus). If the owner of the 
vehicle is a legal entity (LE), the expected number of claims during the year is approximately at category of 
28 to 31 years, more precisely 8.2% higher than in the reference category.

Table 4 Analysis of parameter estimates in the risk models

FREQUENCY MODEL SEVERITY MODEL

Pr
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ic
to

r

Ca
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go
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eEs
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Intercept –1.0413 0.0393 0.0000 0.3530 Intercept 7.6252 0.0571 0.0000 2 049.1903

Po
lic

yh
ol

de
r A

ge

18–23 0.2959 0.0880 0.0008 1.3443 18–26 0.0000 - - 1.0000

24–27 0.1791 0.0436 0.0000 1.1961 27–32 –0.1674 0.0539 0.0019 0.8459

28–31 0.0609 0.0326 0.0413 1.0628 33–37 –0.2645 0.0539 0.0000 0.7676

32–37 0.0000 - - 1.0000 38–45 –0.3526 0.0553 0.0000 0.7029

38–44 –0.1745 0.0305 0.0000 0.8399 46–55 –0.2965 0.0544 0.0000 0.7434

45–53 –0.1881 0.0312 0.0000 0.8285 56–61 –0.2761 0.0594 0.0000 0.7587

54–61 –0.1948 0.0316 0.0000 0.8230 62+ –0.3645 0.0631 0.0000 0.6945

62+ –0.2239 0.0405 0.0000 0.7994 LE –0.3072 0.0542 0.0000 0.7355

LE 0.0788 0.0289 0.0064 1.0820
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Table 4   (continuation)

FREQUENCY MODEL SEVERITY MODEL

Pr
ed

ic
to

r

Ca
te

go
rie

s

Es
tim

at
e

St
d.

 E
rr

or

p-
va

lu
e

eEs
tim

at
e

Ca
te

go
rie

s

Es
tim

at
e

St
d.

 E
rr

or

p-
va

lu
e

eEs
tim

at
e

Ve
hi

cl
e 

Ag
e

0 –0.5923 0.0674 0.0000 0.5531 0 –0.5263 0.0764 0.0000 0.5908

1 –0.3148 0.0380 0.0000 0.7299 1 –0.4359 0.0445 0.0000 0.6467

2 –0.1184 0.0339 0.0005 0.8883 2 –0.2655 0.0398 0.0000 0.7668

3 –0.0890 0.0285 0.0018 0.9148 3 –0.0955 0.0336 0.0045 0.9089

4 0.0000 - - 1.0000 4 –0.0721 0.0293 0.0137 0.9304

5 0.0692 0.0276 0.0122 1.0717 5+ 0.0000 - - 1.0000

6 0.1832 0.0332 0.0000 1.2011

7 0.2757 0.0415 0.0000 1.3175

8+ 0.1879 0.0492 0.0001 1.2067

Pa
ym

en
t F

re
qu

en
cy 1 –0.1271 0.0216 0.0000 0.8806

n. s.
2 –0.0743 0.0277 0.0073 0.9284

4 0.0000 - - 1.0000

12 0.1429 0.0406 0.0004 1.1536

Ve
hi

cl
e 

Po
w

er

0–76 0.0000 - - 1.0000 0–80 0.0000 - - 1.0000

77–112 0.1065 0.0245 0.0000 1.1124 81–95 0.0862 0.0303 0.0045 1.0900

113+ 0.1974 0.0484 0.0000 1.2182 96–124 0.1581 0.0407 0.0001 1.1713

125+ 0.3687 0.0647 0.0000 1,4459

TS
I

0–5000 –0.2373 0.0314 0.0000 0.7888 0–5 000 –0.3070 0.0322 0.0000 0.7357

5001–10 000 0.0000 - - 1.0000 5001–10 000 0.0000 - - 1.0000

10 001–15 000 0.2017 0.0266 0.0000 1.2235 10 001–15 000 0.1964 0.0300 0.0000 1.2170

15 001–25 000 0.2083 0.0407 0.0000 1.2316 15 001–25 000 0.3630 0.0484 0.0000 1.4376

25 001–35 000 0.3328 0.0756 0.0000 1.3949 25 001+ 0.8070 0.0881 0.0000 2.2412

35 001+ 0.3576 0.1014 0.0004 1.4299

En
gi

ne
 Vo

lu
m

e

0–1354 0.0835 0,0292 0.0043 1.0871

n.s.

1 355–1 397 0.0000 - - 1.0000
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Table 4   (continuation)

FREQUENCY MODEL SEVERITY MODEL

Pr
ed

ic
to

r

Ca
te

go
rie

s

Es
tim

at
e

St
d.

 E
rr

or
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va

lu
e

eEs
tim
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e

Ca
te

go
rie

s

Es
tim

at
e

St
d.

 E
rr

or

p-
va

lu
e

eEs
tim

at
e

En
gi

ne
 V

ol
um

e 1 398–1 480 0.0744 0.0328 0.0234 1.0772

n.s.1 481–1 750 0.0476 0.0287 0.0467 1.0488

1 751+ 0.1437 0.0337 0.0000 1.1545

M
ile

ag
e 

pe
r Y

ea
r 0–15 000 0.0000 - - 1.0000 0–5 000 –0.1688 0.0533 0,0015 0.8447

15 000–30 000 0.1141 0.0198 0.0000 1.1209 5 001–10 000 –0.1523 0.0332 0,0000 0.8587

30 000–inf 0.5379 0.0898 0.0000 1.7124 10 001–13 000 0.0000 - - 1.0000

13 001+ –0.1276 0.0244 0.0000 0.8802

B-
M

 C
la

ss

B0 0.0000 - - 1.0000 B0 0.0000 - - 1.0000

B1-B3 –0.2408 0.0216 0.0000 0.7860 B1-B2-B3 –0.1618 0.0265 0.0000 0.8506

B4 –0.3893 0.0283 0.0000 0.6775 B4 –0.1988 0.0346 0.0000 0.8197

B5 –0.5957 0.0345 0.0000 0.5512 B5 –0.1848 0.0414 0.0000 0.8313

B6 –0.6677 0.0485 0.0000 0.5129 B6-B7 –0.2349 0.0556 0.0000 0.7906

B7 –0.9646 0.1316 0.0000 0.3811 M1-M2 –0.1374 0.0531 0.0096 0.8716

M1-M2 0.1419 0.0439 0.0012 1.1525

D
ed

uc
tib

le

No Deductible 0.7058 0.0209 0.0000 2.0255

n.s.
<=1% 0.0000 - - 1.0000

<=2% –0.2518 0.0291 0.0000 0.7774

>2% –0.8400 0.1099 0.0000 0.4317

Re
gi

on

R_A –0.4376 0.0247 0.0000 0.6456 R_C –0.0972 0.0249 0.0001 0.9074

R_B –0.1266 0.0260 0,0000 0.8811 R_D 0.0000 - - 1.0000

R03 0.0000 - - 1.0000 R_E –0.0710 0.0319 0.0258 0.9315

R07 –0.0718 0.0271 0.0080 0.9307 R_F –0.0623 0.0309 0.0438 0.9396

R08 –0.1905 0.0265 0.0000 0.8265

Legend: R_A – R01-R04-R06-R09-R11, R_B – R02-R05-R10, R_C – R01-R07-R08, R_D – R03-R04, R_E – R02-R05-R10, R_F – R06-R09-R11,  
 n. s. – non-significant.
Source: Own construction, customized in R
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Similarly, we can analyse and interpret the expected (average) severity in the context of individual 
variables. As an example, let's take a situation for the variable vehicle power (Vehicle_Power), which  
is given in the kilowatts (kW). The most risk category in terms of vehicle power consists of vehicles with 
an engine power of more than 125kW (eEstimate = e0.3687 = 1.4459). For which the expected (average) 
severity per year and per policy is 44.59% greater than in the reference category with engine power up 
to 80kW, provided that the other factors incorporated in the severity regression model are at the same 
level (ceteris paribus).

The both final risk models introduced in the Table 4 represent the best choice among the other 
proposed ones. Determining appropriate model is crucial in the regression modelling and the emphasis 
is on simplicity. In this section, the models with different risk factors are compared based on the analysis 
of deviance and AIC and BIC, see Table 5.

The several predictive models for frequency and severity has been proposed and tested to find suitable 
subset of variables in the data set resulting for the best performing model. All predictors in the frequency 
and severity in MODEL 1 (full model) were processed as categorical variables. Using the stepwise regression 
with the backward selection strategy the variables Vehicle_Weight and Policyholder_entity were iteratively 
removed as least contributive predictors. Afterwards it was tested MODEL 2 for the frequency and severity 
without these two insignificant variables. In case of the severity MODEL 2 it has been excluded also the 
variable Deductible. According to the results of the analysis of deviance, AIC and BIC, the best model 
for the claim frequency and severity was chose as MODEL 2 in the both cases.

Regarding to the descriptive data analysis provided in the section 2.1 the real data is not normal 
distributed, that is, we cannot use ordinary linear regression model. The linear regression model assumes 
that the outcome of response variable can be expressed by a weight sum of the selected variables with 
an individual error that follows a normal distribution. Simple weight sum is too restrictive for many 
real prediction problems. The outcome given the features might have a non-Gaussian distribution, the 
features might interact and the relationship between the features and the outcome might be nonlinear. 
This paper deals with estimation of the annual claim frequency and severity in the motor hull insurance 
based on generalized linear models.

We try to achieve better understanding the relation of the frequency and severity on the presented risk 
factors. The empirical study results are represented in the Table 4. This particular case study shows that 
the variables Vehicle_Weight and Policyholder_entity and Deductible have no statistical significance for 
the annual claim analysis. Based on the principle of simplicity we used the analysis of deviance to choose 
suitable model. In fact, this model is quite simple, what is very important and useful in the actuarial practice. 

To better demonstration of achieved results from the Table 4, it is computed random policyholder 
profile to set the risk premium, see Table 6.

Table 5 The analysis of deviance, AIC and BIC  

Criterion
FREQUENCY SEVERITY

MODEL 1 MODEL 2 MODEL 1 MODEL 2

Deviance 53 517.93 53 518.26 11 877 11 734

AIC 71 380.00 71 375.00 199 914 199 850

BIC 71 842.14 71 808.19 200 284 199 984

Source: Own construction
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Table 6 Motor hull insurance: the model results for random selected potential customer profile

Policyholder’s properties
Frequency

Risk profile Reg. coeff Reg. coeff

Intercept 1 –1.0413 0.3530  7.6252 2 049.1903

Payment Frequency 12  0.1429 1.1536  0.0000       1.0000

Policyholder Age 28  0.0609 1.0628 –0.1674       0.8459

Vehicle Age 0 –0.5923 0.5531 –0.5263       0.5908

B-M Class B0  0.0000 1.0000  0.0000       1.0000

Region R2 –0.1266 0.8811 –0.0710       0.9315

Vehicle Engine Volume 1 420  0.0744 1.0772  0.0000       1.0000

Vehicle Power 78.6  0.1065 1.1124  0.0000       1.0000

TSI 17 300  0.2083 1.2316  0.3630       1.4376

Deductible <=1%  0.0000 1.0000  0.0000       1.0000

Mileage per Year 7800  0.0000 1.0000 –0.1523       0.8587

Πe j × × 0.3112 × 1 177.6

Source: Own construction

The frequency model predicts the number of claims for the different categories of the policyholders. 
General form of this model (see Table 4) is given by:

f = e–1.0413 . (e0.2959)ph_age 18–23 . (e0.1791)ph_age 24–27 . … . (e–0.0718)regionR07 . (e–0.1905)regionR08 .

The expected claim frequency (the average number of the claims during the year) is then determined 
for some client with the properties listed in the Table 6 according to the formula:

f = 0.3530 . 1.1536 . 1.0628 . 0.5531 . 1 . 0.8811 . 1.0772 . 1.1124 . 1.2316 . 1 . 1 = 0.3112.

The similar form can be expressed for the severity model which predicts the claim costs per policy 
where the various properties of the policyholder are taken into consideration:

s = e7.6252 . (e–0.1674)ph_age 27–32 . … . (e–0.0623)regionR_F .

The expected severity during the year per policy, is then determined for the client with the properties 
listed in the Table 6 according to the formula:

s = 2 049.1903 . 1 . 0.8459 . 0.5908 . 1 . 0.9315 . 1 . 1 . 1.4376 . 1 . 0.8587 = 1 177.6.

According to the Formula (1) we can calculate the risk premium for some client as:
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RiskPremium = 0.3112 . 1177.6 = 366.5005.

To sum it up, it is proposed GLMs approach to investigate the risks connected with non-life policy.  
Based on the risk models from section 3.2, estimated premium for the specific risk profile of policyholder 
is  EUR.

CONCLUSION 
Motor hull insurance is one of the most widespread insurance in many countries and lots of data  
is disponible. Process of the setting the price is often difficult exercise since there are many different 
explanatory variables available. It is also very important that the rating system for set the risk 
premiums is treated carefully by company. Policyholders may leave when they are overcharged or 
in the contrary very low price may attract bad risks. 

We have discussed in the paper the use of generalized linear models in actuarial practise which represent 
a suitable tool to predict key ratios, like the claim frequency, claim severity and the risk premium. GLMs 
are very effective because they are fairly accurate and are easy to explain to the layman in terms of the 
effect of each rating factor. Classification of the observed losses according to the appropriate risk factors 
is very important in determining how accurate the rating system is, the risk factors tells us exactly which 
level of which risk factor causes the biggest loss – should be charged the highest risk premium and 
which causes the smallest loss should be the lowest premium. The core concept of GLMs is to keep the 
weighted sum of features but allow non-Gaussian outcome distributions and connect the expected mean  
and the weighted sum through a possibly non-linear function.

At the first stage, the frequency of claims is estimated using the Poisson regression. In the next 
stage, the severity is determined by Gamma model where the log-link function is defined in both cases.  
The risk premium can be then expressed as the product of the expected claim counts and average cost 
per claim. Since all the weights are in the exponential function, the effect interpretation is not additive, 
but multiplicative. The regression coefficients as resulting from the frequency-severity model presented 
in the Table 4 can be also not continuous or their progress is not smooth enough which can be caused 
by inadequate accuracy, but also the data that does not have the behave how we would be expected.  
In practice this happen very often, when some factors really reflect an increasing or decreasing risk. 

Apart from the general risk factors as Policyholder age, Vehicle age, TSI, etc…, we tend to classify the observed 
losses according to the Bonus-Malus system variable. This system leads to a discount – bonus in risk premium. 
When the claims have occurred the premium increases as the consequence of it – malus, see Table 5.

We processed a dataset with n = 91 685 policies. According to descriptive analyses provided in the 
initial section of the empirical study we see, that histogram of the claim frequency and claim severity  
is strongly right-skew, see the Figure 1 and Figure 2. It follows from this that ordinary linear regression 
is not fully suitable. The policyholders are divided into the groups based on the risk factors, see Table 2. 
According to these 10 risk factors, we get 192 000 groups. Exposure, total number of claims and total claim 
amount is known for each group. The variables Vehicle_Weight and Policyholder_entity are statistically 
insignificant and rejected at significance level of 0.05 in the risk model. The next variable Deductible  
is rejected just for claim severity model.

The actuaries should be aware of the so-called “one-dimensional analysis” and should not be tempted 
to stop the analysis in finding the averages of responses caused by each risk factor in our portfolio.  
The reason is very justified, these risk factors are very likely to be correlated.

We try to find the suitable GLMs for the claim frequency and claim severity in term of the risk factors. 
The models with different risk factors are constructed and compared each other using the analysis  
of deviance AIC and BIC criterion. The best risk models are those that have the lowest decision criterions 
compared to others that is MODEL 2 in both cases, see Table 5.
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