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Abstract

The importance of working with sufficiently robust methods has been rising in recent years. This growth 
is related to the extensive usage of highly frequent  data, which we currently encounter in many fields including 
finance. Since with an increasing number of observations, the probability of outlier presence also rises. Moreover, 
as it is known, standard methods are not able to work correctly with outliers and, consequently, standard  
estimates are often biased. We focus on estimators of autocorrelation function for univariate time series, 
for which we propose a method based on clipping an original time series and working with a binary time series 
instead. The clipping helps to deal with outliers and the estimation is not affected as much as with standard 
methods. We also derive an asymptotical distribution of the estimator, what gives our method a major advantage  
in comparison with other robust methods, which are often presented without this. Furthermore, knowing 
the distribution of the estimator allows us to perform statistical inference.

Keywords

ACF, robust estimation, clipping, confidence interval, time series

JEL code

C10, C22 

INTRODUCTION
The autocorrelation function (ACF) expresses the correlation among observations of the time series. 
It plays an important role in time series theory because it partially describes the relationship among 
the observations of the series. Furthermore, it gives us an overview of the time series, and we can use 
it to investigate or to model the time series. 

Estimation of the ACF can be negatively affected by many factors. One of them is an outlier presence, 
very relevant nowadays, when we face many problems related to the extensive usage of big data. There 
are several robust methods for ACF estimation designed to be able to take account of outliers. These 
methods should, naturally, be less sensitive to outliers and should lead to better results in general (Chan 
and Wei, 1992).

There has been a plethora of approaches proposed by many authors. Chakhchoukh (2010) presented 
a median approach, where he suggested to use the median instead of the mean in the standard estimator. 
Ma and Genton (2000) proposed a Gnanadesikan-Kettenring approach based on the special relationship 
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for an autocovariance function (Gnanadesikan and Kettenring, 1972), while Maronna et al. (2006) proposed 
a robust filtering approach. Dürre et al. (2015) presented a useful overview of robust ACF estimators, 
including those we do not mention specifically. However, the above mentioned estimators are almost 
always presented without specifying the distribution. Therefore, we are not able to test the significance 
of the ACF order, or to test hypotheses related to the ACF.

In this paper, we present a new approach for ACF estimation. This approach is based on clipping, 
i.e. the process, when we replace original observations by zeros when they are below a given threshold, 
resp. by ones when they are above. We do not only construct the ACF estimator, but we also derive 
the asymptotical distribution of the ACF estimator. Using the distribution of the estimator, we suggest 
an analogous approximation to Bartlett’s approximation (Bartlett, 1946), which is used to determine 
the ACF order significance.

We apply the proposed clipping approach in a simulation study in order to compare its results with 
a standard sample estimator. Finally, both approaches are used in a study with real world data, where 
we investigate the behavior of the 1-year (1Y) historical volatility of Bitcoin logarithm of daily returns.

The methodology of the clipping approach is presented in Section 1. The distribution of the estimator 
is derived in Section 2. The simulation study is presented in Section 3. The real data study is presented 
in Section 4. The last section includes conclusions of our study. 

1 METHODOLOGY
Let   { }0, nZ n N∈  be a stationary time series. Then we can define an autocovariance function of the lag 
k, k ∈   Z, R(k) as

 (1)

where μ is the expected value of the process.
We define an autocorrelation function (ACF) of the lag k, k ∈   Z, ρ(k) of the stationary process 

 { }0, nZ n N∈  as

                                      (2)

where σ 2 is the variance of the time series.
We define a sample autocorrelation function of the lag k, k ∈   Z,  ( )ˆ kρ , of the data Z0, ..., Zm as

 (3)

where Z
 

 is the mean of the data.
Let {Zn, n ∈   N0} be a strictly stationary time series with autocorrelation function ρZ(k). For a fixed h, 

h ∈   R, a so called threshold, we define {Xn, n ∈   N0} followingly:

 (4)

A time series {Zn, n ∈   N0} is called original and {Xn,h, n ∈   N0} is known as clipped or hard-limited. Let 
us denote an autocorrelation function of this clipped time series by ρX(k).
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In Figure 1, we can see an illustrative example of clipping the original time series {Zn, n ∈   N0} 
at the threshold h = 0.

Figure 1  Illustrative example of clipping at the threshold h = 0

Source: Own construction

In Kedem (1980) it was proved, under the assumption of a zero threshold (h = 0) and a zero mean 
(μ = 0) strictly stationary Gaussian original time series {Zn, n ∈   N0}, that

                                                                     (5)

Easily, it can be rewritten into

                                                         (6)

Using (6) we can construct a new robust ACF estimator  ( )Z kρ� . The construction can be divided into 
the following steps:
 1.  Derive a clipped (h = 0) time series {Xn,0, n ∈   N0} from the original time series {Zn, n ∈   N0} which 

is of our interest.
 2. Calculate a sample ( )ˆX kρ  from the clipped time series {Xn,0, n ∈   N0}.
 3. Calculate an estimation  ( )Z kρ�  from the ( )ˆX kρ  using Formula (6).

The clipping in step 1 helps to face outliers. It is similar to widely used trimming methods, however, 
the loss of information has a different nature. 

2 DISTRIBUTION OF THE ESTIMATOR  ( )Z kρ�  
Bartlett’s approximation (Bartlett, 1946) is frequently used for determination of the ACF order significance. 

It can be formulated as

                                          (7)
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where:

                                                           (8)

and m is the number of observations.
Analogously, we can formulate a similar approximation of our estimator

                                                                                                 (9)

where:

                                                                                       (10)

and m is the number of observations.
We can prove Formula (9) using Bartlett’s approximation and Delta method (Greene, 2003). Bartlett’s 

approximation for the clipped time series {Xn,0, n ∈   N0} yields the following:

                                                           (11)

Delta method is a result concerning the asymptotic distribution of the transformed random variable 
in a specific situation. If there is a time series {Zn, n ∈   N0} satisfying:

                                                                           (12)

where θ and σ 2 are finite valued constants and
 D
→  denotes convergence in distribution, then

                                                                                                 (13)

for any function  ( )g x  satisfying that 
 ( )d g
dx

θ  exists and is non-zero valued.

      Finally, if we set 
 
( ) sin

2
π =

 
, then Delta method gives us approximation (9), because

                                                                                    (14)

                                                                              (15)

Easily, we can show equivalence (16), which we use later to prove  statement (18),

ρX(k) = 0 ⇔ ρZ(k) = 0.                                  (16)
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Since ρZ (k) = 0 only if ρZ (k) = 0, and 
 

( )
2 X kπ ρ  =

 
 only if . So it comes from Formulas (5) and (6). 

Similarly, we use a special case of equation (10) for ρX (k) = 0 for k > k0. We have:

                                                                                                        (17)

To determine the significant order of an ACF by our estimator, we use the following statement, which 
is proved by Formulas (16) and (17). If ρZ (k) = 0 for k > k0, then

                                                                                 (18)

So, we would look for k0 that holds

                                                                            (19)

where u1–α is a (1 – α)% quantile of the standard Gaussian distribution and α is a significance level.

3 SIMULATION STUDY
In the presented simulation study, we compare our estimator with a standard sample estimator. We use 
MA(q) time series {Zn, n ∈   N0}: 

                                                                             (20)

where  { }0, n n Nε ∈  and  1 2, , , qθ θ θ…  are parameters of the time series.
The simulation study was designed in the R software (R Core Team, 2015).
We run 10 000 simulations with 1 000 observations, which we contaminate with additive outliers 

(Fox, 1972).
In the additive outlier (AO) model, we assume that we do not observe the process of interest 

{Zn, n ∈   N0} but, actually, we observe a process {Yn, n ∈   N0} defined as

Yn = Zn + On ,                         (21)

where processes {Zn, n ∈   N0} and {On, n ∈   N0} are assumed to be independent of one another. 
Let {On, n ∈   N0} be a process with independent and identically distributed (i.i.d.) random variables 

that have a normal mixture distribution with a degenerate central component:

                                                                (22)

where δ0 is the point mass distribution located at zero, and we assume that the normal component 
 ( )2,O ON µ σ  has a variance significantly higher than the process  { }0, nZ n N∈ ,  2 2
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The probability of outlier occurrence is represented by ε, which is usually small. Consequently, 
the probability of occurrence of two outliers in a row is a much smaller ε2, which means that the AO 
model generates mostly isolated outliers.

The percentage of outliers present in a single simulation is chosen randomly with a uniform distribution, 
i.e.  [ ]( )~ 0.00,0.05Uε . We use the outlier standard deviation  10Oσ = .

The absolute values of the parameters of the MA(q) are generated randomly with a uniform distribution, 
i.e. θi ~ U ([0.2,1.0]), i = 1,2, ... , q. Values of θi being close to zero are not taken into account because they 
are difficult to observe. The sign of the parameters is generated randomly with Bernoulli’s distribution 
with the probability of a success p = 0.5.

We divide our simulation study into 2 parts. In the first part, we work with MA(1), MA(2) and MA(3) 
times series, where we estimate ACF of the series and compare the methods using mean average error 
(MAE) criterion.

In the second part, we work with MA(3), which have theoretically significant ACF to 3rd order 
and we estimate the highest significant order according to the methods. In both parts we use h = 0 
for the clipping method.

For the first part, we run 10 000 simulations for every model, so together 30 000 simulations. 
We obtain results summarized in Table 1.

Table 1   Comparison of the standard sample estimator and the clipping approach estimator in point estimation 
in the simulation study

Table 2   Comparison of the standard sample estimator and the clipping approach estimator in significant order 
in the simulation study.

Source: Own construction

Source: Own construction

MA(q) ρ(k) Standard approach Clipping approach

MA(1) ρ(1) 0.2258 0.0361

MA(2) ρ(1) 0.1674 0.0368

ρ(2) 0.1679 0.0396

MA(3) ρ(1) 0.1468 0.0373

ρ(2) 0.1365 0.0399

ρ(3) 0.1277 0.0414

In Table 1, we can see that our clipping method gives better results for every model and every order 
of autocorrelation function. It is caused by the bias of the standard method (Maronna et al., 2006).

For the second part we use a significant level α = 0.05 and we obtain results summarized in Table 2. 

Significant order Standard approach Clipping approach

1 2.94% 0.22%

2 10.01% 5.48%

3 70.26% 77.48%

4 3.83% 3.65%

5 3.98% 4.11%

6 4.38% 4.13%

7 and more 4.60% 4.93%
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In Table 2, we can see how many simulations have the highest significant order of ACF at presented 
values 1, 2, ..., 6, 7 and more . We see that the standard approach tends to underestimate the significant 
order more than the robust estimator based on clipping. It is caused by outliers which weaken correlation 
between neighbor observations (Maronna et al., 2006), i.e. autocorrelation function.

4 REAL DATA APPLICATION
We investigate a daily time series of Bitcoin (the most used crypto currency) log returns. We have data 
(close prices) from Yahoo Finance from the period  from 16/07/2010 to 18/08/2018 (2 956 observations). 
Usually, log returns are investigated instead of the original rates, because of a non-stationarity and a high 
autocorrelation, which could be misleading. Firstly, we define a log return:

                                      ,               (23)

where pn is a price for n-th observation.
Then we calculate the 1-year historical volatility from the log returns:

                                                              ,        (24)

where: 

                                                         (25)

and 365 is the number of days within a year.
The point of our interest is the change (delta) of volatility, so we have to define the logarithmic change 

of the 1Y historical volatility:

                                                             (26)

Our logarithmic changes of the 1Y historical volatility are displayed in Figure 2.

Figure 2  Logarithmic changes of the yearly historical volatility of Bitcoin log returns

Source: Own construction
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We can see a few isolated outliers in Figure 2. The biggest one is from 26/02/2015 and it is caused 
by losing a high log return from 26/02/2014, which was caused by price change from $135.78 to $593.14. 
The presence of these outliers could lead to a weaker autocorrelation.

Autocorrelation functions for standard sample estimator and clipping approach estimator are shown 
in Figure 3. It contains also critical values for  a significant level α = 0.05 for both estimators.

Figure 3   Comparison of the standard sample ACF estimation and the clipping approach ACF estimation 
with critical values

We can see the significance to 6th order of ACF for standard sample method. On the other hand, 
the clipping approach shows much higher correlations (with maximum 0.35 and average 0.3 over first 
15 orders) and it is significant to the last presented order. The standard sample method could mislead 
us to a lower order of ACF and a weaker autocorrelation (with maximum 0.15 and average 0.05 over first 
15 orders), but in reality, we should consider higher lags, or, alternatively, we could try to model the time 
series using AR(p) and have satisfying results.

DISCUSSION AND CONCLUSION
We have constructed a new robust ACF estimator based on clipping. Furthermore, we presented 
the asymptotical distribution of the estimator. We consider the knowledge of the distribution as a major 
advantage in comparison with other robust estimators, since it allows us to investigate the significance 
of the ACF orders or to test relevant hypotheses that occur when solving particular problems.

In Section 3, we have designed a simulation study, where we have compared the clipping approach 
estimator with the standard sample estimator using data contaminated with additive outliers. Firstly, 
we have compared the point estimates of the methods and our proposed clipping approach method has 
given better results for all cases. Secondly, we have exploited the knowledge of the clipping approach 
estimator and the standard sample estimator, the distribution of which is well known. The simulation 
study has shown us the underestimation of the standard approach in comparison with the clipping 
approach. This has confirmed our expectations, since additive outliers should weaken the relationship 
between neighboring observations.

Source: Own construction
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Finally, we have compared both approaches in a study with real world data, where we have investigated 
the logarithmic change of 1Y historical volatility of Bitcoin log returns. The standard approach has 
suggested a weaker autocorrelation. We tend to trust more the clipping approach, since it has shown 
a stronger autocorrelation, which could lead us even to AR(p) time series.

In conclusion, we suggest to use robust methods in the case of additive outliers. On the other hand, 
for innovative outliers, it may be better to use the standard approach (Flimmel et al., 2017). If there 
is a need to know the distribution of the estimator, we definitely recommend the clipping approach 
estimator.
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