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Abstract

The present paper is focused on non-parametric estimation of conditional density. Conditional density can 
be regarded as a generalization of regression thus the kernel estimator of conditional density can be derived 
from the kernel estimator of the regression function. We concentrate on the Priestley-Chao estimator of 
conditional density with a random design presented by a uniformly distributed unconditional variable. The 
statistical properties of such an estimator are given. As the smoothing parameters have the most significant 
influence on the quality of the final estimate, the leave-one-out maximum likelihood method is proposed for 
their detection. Its performance is compared with the cross-validation method and with two alternatives of 
the reference rule method. The theoretical part is complemented by a simulation study.2
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INTRODUCTION
Kernel smoothing is still a popular non-parametric procedure, in theory as well as in practice. There are 
numerous monographs concerned with the kernel smoothing approach, e.g., Wand and Jones (1994). 
Computational implementations in MATLAB were developed by Horová et al. (2012). The present 
paper focuses on the kernel conditional density estimation. Several estimator types can be found in the 
literature with the Nadaraya-Watson one being probably best known (see Rosenblatt, 1969). The local 
linear estimator of conditional density was suggested by Fan et al. (1996) for its better statistical properties 
and boundary effects.

Conditional density can be regarded as a generalization of regression, which models the conditional 
mean while conditional density models the whole distribution. This is the reason why a kernel regression 
estimator can be generalized to a kernel conditional density estimator. The present paper extends the 
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Priestley-Chao regression estimator (for detailed information see Priestley and Chao, 1972) to estimate 
even conditional densities.

Each kernel estimator depends on the smoothing parameters called bandwidths, values which 
significantly influence the final estimation. This is the reason why so much importance is given to their 
selection. There are many methods discussed in the literature, most of them suggested for the Nadaraya-
Watson estimator, with only a few of them for the local linear estimator. 

Introduced by Fan and Yim (2004), Hansen (2004) and Hall et al. (2004) and based on minimizing 
the Integrated Squared Error, cross-validation is a method typical of bandwidth selection. Bashtannyk 
and Hyndman (2001) suggested a reference rule method for normal underlying conditional density 
and for two marginal density choices – normal and uniform. Some methods extend the methods 
suggested for kernel regression. The iterative method proposed by Konečná and Horová (2014), for one, 
is motivated by the iterative method developed for kernel density estimation and for kernel regression 
(for detailed information, see Horová and Zelinka (2007), Horová et al. (2012), Koláček and Horová 
(2012)). Other examples include the bootstrap method by Bashtannyk and Hyndman (2001) and Fan 
and Yim (2004) as well as the fast dual-tree based algorithms using a maximum likelihood criterion 
(see Holmes et al., 2012).

Kernel conditional density estimation is still employed in practice: Takeuchi et al. (2009) show its 
application in medicine (the relative change in spinal bone mineral density is explored as a function of the 
age of adolescents), Jeon and Taylor (2012) are interested in 1-to-72-hours ahead wind-power prediction 
from which the management of wind farms and electricity systems can profit. Another application, 
forecasting electricity smart meter data, helping consumers to analyze and to minimize their electricity 
consumption and enabling new pricing strategies for suppliers, is introduced by Arora and Taylor (2016).

As mentioned above, papers are focused primarily on the Nadaraya-Watson or the local linear estimator. 
The present paper suggests the Priestley-Chao estimator for the uniformly distributed design, based on 
the estimator suggested for the equally spaced design (see Konečná, 2017). The leave-one-out maximum 
likelihood method follows the one proposed by Konečná (2018).

The paper is organized as follows: Section 1 deals with the Priestley-Chao estimator of conditional 
density and its statistical properties. The optimal values of the smoothing parameters are derived, and 
the leave-one-out maximum likelihood method for their practical estimation proposed in Section 2. This 
method is complemented by the cross-validation method and by two alternatives of the reference rule 
method. A simulation study in Section 3 then presents the performance of the methods by a simulation 
study. The proofs of the statistical properties can be found in the Appendix.

1 THE PRIESTLEY-CHAO ESTIMATOR OF CONDITIONAL DENSITY
The conditional density f(y|x) models the probability of a random variable Y given a random variable X, 
represented by a fixed observation X = x. Let {(Xi,Yi), i = 1,…,n} be an observed data sample of a pair of 
real random variables (X,Y). The kernel estimate of conditional density generally takes the form:

                                                           � (1)

where wi(x) is a weight function, and K is a real, symmetric, nonnegative kernel function satisfying:

                                                           � (2)

The present paper uses the Gaussian kernel. The smoothing parameters hx > 0, hy > 0 control the 
smoothness of the estimate. The estimate of conditional density is also influenced by the estimator type (1).
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Our focus is on the Priestley-Chao estimator, originally proposed for the kernel regression estimation 
(Priestley and Chao, 1972). Konečná (2017) dealt with the Priestley-Chao estimator for conditional density 
with the fixed design, i.e., the fixed values  of the design variable X were assumed.

Next, we are concerned with the estimator for the random design specified by a uniformly distributed 
variable X on the interval [0,1]. The estimator can easily be extended for the design variable X on the 
interval [a, b], a < b. The statistical properties of the estimator will be given and methods for bandwidth 
detection proposed.

Let X be a uniformly distributed random variable with the marginal density function:

                                                          �

As the focused weight function in Formula (1) is , the Priestley-Chao estimator 
takes the form:

                                                          � (3)

The Priestley-Chao estimator of the regression function is expressed by the conditional mean of the 
Formula (3):

                                                         �

Theorem 1 Let X be a uniformly distributed random variable on the interval [0,1], Y be a random variable 
with density f(y|x) being at least twice continuously differentiable, and K(x) be a real, symmetric, nonnegative 
kernel function satisfying (2). For , the 
asymptotic bias (AB) and the asymptotic variance (AV) are given by:

where: R2(K) = ∫RK2 (u) du.

Proof. The proof can be found in the Appendix.
The local quality of the estimate at the point [x,y] is given by the mean squared error (MSE) which 

is the simple decomposition to the variance (V) and the squared bias (SB). Considering the main terms 
only, the asymptotic MSE (AMSE) is obtained as:

                             � (4)

The statistical properties of the Formula (3), particularly the global quality measure expressed by the 
asymptotic mean integrated squared error (AMISE), are necessary for assessing the quality of the estimate 
and the theoretical values of the smoothing parameters. AMISE is obtained by integrating (4) weighted 
by the marginal density g(x) as:
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The following form of the AMISE is more succinct for further processing:

                                                     � (5)

where the constants c1, c2, c3, c4 are given by:

                                                 � (6)

Remark. Note that all the integrals with respect to x are computed over the support of the X variable, i.e., 
over the interval [0,1]. The integrals with respect to y are considered over R.

2 METHODS FOR BANDWIDTH SELECTION
The values of the smoothing parameters have an essential significance for the final estimate of conditional density. 
First, the optimal widths of the smoothing parameters are derived as the values minimizing the AMISE. As the 
optimal bandwidths depend on the true conditional and marginal density function, it is necessary to develop  
a data-driven method for their estimation. In this section, the leave-one-out maximum likelihood method, the 
cross-validation method, and two alternatives of the reference rule method are suggested for their detection.

2.1 Optimal values of the smoothing parameters
The optimal values of the smoothing parameters are given as the values which minimize AMISE given by 
(5). By differentiating (5) with respect to hx and hy and setting the derivatives to 0, we obtain the following 
system of non-linear equations:

                                                  � (7)

Solving system (7), the optimal bandwidths are given by:

                                                � (8)

Both hx
* and hy

* are of order n–1⁄6 while the order of AMISE is n–2⁄3.

2.2 The leave-one-out maximum likelihood method
As mentioned above, with a real dataset, a data-driven method is needed for bandwidth selection. We 
will modify the maximum likelihood method, which is a standard statistical procedure for estimating 
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unknown parameters. This method was originally proposed for kernel density estimation by Leiva-
Murillo and Artes-Rodriguez (2012), and their approach is generalized to include the Priestley-Chao 
estimator of conditional density.

Since the objective function:

                                                    � (9)

is considered for all n observations, the optimization problem  has a trivial solution. If i = j in 
(9), the objective function (9) increases to infinity for hx → 0 and hy → 0. Of course, this is not the desired 
behaviour because, with very small values of bandwidths, the final estimate tends to be undersmoothed.

This problem can be solved by leaving out one observation and employing the modified objective 
function:

                                              � (10)

If the natural logarithm of the likelihood function L* given by (10) is taken into account, the values 
of the smoothing parameters maximize:

and are developed as:

2.3 The leave-one-out cross-validation method 
The cross-validation method is a standard procedure for bandwidth selection in kernel smoothing. 
Introduced by Fan and Yim (2004), Hansen (2004) and Hall et al. (2004), the method is associated with the 
global quality measure of the estimator, with the integrated squared error (ISE). With  
being the estimate at the point (Xi,Yi) using the points {(Xj,Yj), j ≠ i}, the cross-validation function:

is the proper estimator of the ISE. 
The values of the smoothing parameters are given by:

2.4 The reference rule method 
The reference rule method was originally proposed for the Nadaraya-Watson estimator by Bashtannyk 
and Hyndman (2001). They assumed a normally distributed random variable Y|(X = x) with linear 
conditional mean and constant or linear standard deviation. Additionally, they distinguished two 
possibilities for the marginal distribution, considering uniform and truncated normal marginal 
densities.

Our approach via the Priestley-Chao estimator corresponds to the choice of a uniform marginal density. 
We assume that the conditional distribution is normal with the mean m(x) and standard deviation σ(x). 
Hence, the conditional density of  Y|(X = x) is:
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                                                    � (11)

Two different situations are considered:
(a) According to Bashtannyk and Hyndman (2001), the model with the linear conditional mean  
m(x) = p0 + p1 x and the linear standard deviation σ(x) = q0 + q1 x is assumed. The values of the constants 
c1, … , c4 are given by the expressions:

                    

                       � (12)

where .

The values of the smoothing parameters are obtained by substituting (12) into (8).
(b) The model with the quadratic conditional mean m(x) = p0 + p1 x + p2 x2 and the constant standard 
deviation σ is suggested. The constants c1, … , c4 are given by:

� (13)

The values of the smoothing parameters are obtained by substituting the terms (13) into (8).
Remark. The expressions (13) are obtained by differentiating (11) twice and substituting them into (6). 
As the computations of the integrals in (6) include many auxiliary derivations, only a sketch of them is 
presented.

A conditional random variable Y|(X = x) ~ N(m(x), σ2) with the density function f(y|x) is assumed. 
The following equality:

where f1(y|x) is a density function of a conditional random variable Y1|(X = x) ~ N(m(x),  σ2), was used. 
For evaluating the integrals in (6), the below auxiliary expression was derived:
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where A = R · [0,1] is the domain of integration,

and ∙  denotes the ceiling function.

3 SIMULATION STUDY
In this section, a simulation study comparing four methods for bandwidth estimation is conducted. The 
considered methods are the maximum likelihood method (ML), the cross-validation method (CV), 
the reference rule method with linear conditional mean and linear standard deviation (REF1), and the 
reference rule method with quadratic conditional mean and constant standard deviation (REF2). Two 
models are involved in the simulation study. To demonstrate the adaptability of the methods to various 
shapes of the regression function or conditional density, a changing shape of the conditional mean is 
presented in the first model. In the second model, a bimodal and non-symmetric conditional distribution 
is chosen as a mixture of two normal densities. The models are defined as:

In both simulation studies, one hundred observations (n = 100) were generated. The described methods 
for bandwidth selection are compared from several points of view – the estimates of the smoothing 
parameters and the quality measure of the estimate. The quality of the final estimate was measured by 
an estimate of the integrated squared error (ISE) given by:
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where  y = (y1, … , yN) is a vector of equally spaced 
values over the sample space of Y and ∆ is the 
distance between two consecutive values of y, i.e. 
∆ = yj+1 – yj, j = 1, … , N – 1. In both simulation 
studies, the number of y values was set to N = 100.

For both models, five hundred repetitions have 
been made to obtain the described characteristics. 
The results are displayed in boxplots and 
supplemented by numerical values in the text. 

First, the results for the model M1 are 
summarized. A scatterplot of one set of the sample 
values of model M1  is displayed in Figure 1.

Boxplots of the estimates of the smoothing 
parameters hx and hy are displayed in Figure 2. It 
can be seen, that the ML and CV methods lead 

to good values for hx (medians are 0.0613 for ML 
and 0.0288 for CV), the REF1 and REF2 methods 
produce highly variable bandwidths exceeding the 
optimal value hx

* = 0.0455.
Considering the estimates of the smoothing 

parameter hy, the values estimated using REF1 
resemble those with REF2. Their medians 
0.2927 and 0.2863 (in this order) are close to the 
optimal value hy

* = 0.3213, and the estimates are 
characterized by a low variability (their standard 
deviations are close to 0.02). The ML method gives 
slightly higher values than the optimum hy

*, the 
median of the values being 0.3631. The CV method 
tends to produce values well under the optimal 
value which results in a much undersmoothed 
estimate of conditional density.

Figure 1 A scatterplot of one hundred observations  
	 of model M1

Figure 2	 Estimates of the smoothing parameters hx and hy along with the optimal values (horizontal lines) for the ML,  
	 CV, REF1, and REF2 methods in model M1

Source: The author's own construction

Note: The log-scale of the vertical axis in the left-hand-side panel.
Source: The author's own construction

Figure 3 Estimates of the ISE values (expressed in the log- 
	 scale) for the ML, CV, REF1, and REF2 method and  
	 for the optimal bandwidth choice (OPT) in model M1

Source: The author's own construction
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The ML method results in an ISE that is 
smaller than any other methods considered as 
well as the optimal bandwidth choice (OPT). 
Both reference rule methods produce ISE values 
slightly higher than OPT while the values of the 
CV method are well above the optimal bandwidth 
choice.

Now, we focus on the results of model M2. The 
scatterplot of a sample generated by model M2 is 
shown in Figure 4. 

Boxplots of bandwidth estimates are shown in 
Figure 5. Both reference rule methods produce 
values of hx and hy well above the optimal values, 
which results in an overvalued final estimate with 

worse capability to adapt to bimodal conditional 
density. On the other hand, the low values of 
both smoothing parameters obtained by the CV 
method lead to the undersmoothing of conditional 
density and abundance of useless information in 
the data. The ML method performs the best in this 
simulation study.

The ML method is also suitable in terms of the 
ISE (see Figure 6). The medians of the ISE values 
obtained by the reference rule methods (0.0555 
for REF1 and 0.0527 for REF2) do not reach the 
median (0.0742) of the ISE values for optimal 
bandwidths, but the REF1 method suffers from 
the large variability (standard deviation is 0.3143). 
The CV method provides highly variable ISE values 
exceeding the OPT values. 

Figure 4 A scatterplot of 100 observations by model M2

Figure 6 Estimates of the ISE values (expressed in the  
	 log-scale) for the ML, CV, REF1, and REF2  
	 methods and for the optimal bandwidths  
	 (OPT) in model M2

Figure 5	 Estimates of the smoothing parameters hx and hy and the optimal values (horizontal lines) for the ML, CV,  
	 REF1, and REF2 method in model M2

Source: The author's own construction

Source: The author's own construction

Source: The author's own construction
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CONCLUSION
The presented paper generalizes the Priestley-Chao estimator from the restrictive fixed design to the 
uniformly distributed random design variable X. The statistical properties of this estimator are derived, 
and the methods for bandwidth selection are suggested.

The leave-one-out maximum likelihood method, a modification of the classical likelihood approach, 
is proposed for bandwidth detection. This method is complemented by the cross-validation method and 
the reference rule method. The original approach of the reference rule method was extended to a normally 
distributed conditional variable with quadratic mean and constant standard deviation.

The performance of the suggested methods is presented using two simulation studies focusing on 
the bandwidth estimates and the quality measure estimates. The results show that the cross-validation 
method tends to undersmooth significantly. The reference rule method assuming the quadratic conditional 
mean produces results similar to or better than the reference rule with a linear conditional mean and 
linear standard deviation, but none of these two methods outperforms the ML method. On the other 
hand, the results of these two references are better than those of the CV method, even in the cases of the 
underlying conditional density not resembling the conditional density assumed by the reference model.

The ML method can adapt well not only to the changing shape of the conditional mean and conditional 
normal distribution but also to a bimodal or an asymmetric distribution. The method always results in an 
ISE that is smaller than the optimal bandwidth choice. It also detects the bandwidths which decrease ISE 
estimates, but does not underestimate the parameter hx as the optimal case usually does. The simulation 
study shows that the proposed maximum likelihood method is a reasonable tool for bandwidth selection.
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APPENDIX

Here, a detailed proof of Theorem 1 can be found.
Proof. All the computations are based on Taylor expansions with higher-order terms ignored. First, the 
expectation (E) of the Formula (3) is derived:

Then, the asymptotic bias is given as:

The variance of the estimator is derived by the well-known law of total variance. Let X and Y be random 
variables. Then, the following equality holds:

� (14)

First, by (14), the variance of the i-th term of the Formula (3) is derived.
The conditional expectation of the estimator's i-th term  can be written as:

� (15)

The conditional expectation of the squared i-th term in (3) is given by:

� (16)

where G(K) = ∫ u2 K2 (u)du. By subtracting the second power of (15) from (16), we have:
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� (17)

Finally, by applying the expectation to (17), the first term of (14) is acquired:

� (18)

The expected value of (16) and its square are used to derive the variance of the conditional Formula (16).

� (19)

� (20)

Thus, the variance of (16) is obtained by subtracting (19) squared from (20):

� (21)

As the expression (21) is the desired second term of (14), the variance of the i-th term of the Priestley-
Chao estimator is obtained by summing up (18) and (21):

It can be easily shown that the equation:

holds, i.e., the two terms of the Priestley-Chao estimator are not correlated. Then, the variance of the 
Formula (3) is given by:

By taking into account only the leading terms of bias and variance, the theorem is proven.


