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Abstract

Estimates of the ultimate claim value occur in many actuarial models. Detailed data about each claim are 
available for estimation: each claim is at first booked at an initial value and processed over a random number 
of years, during which it is adjusted until closure. The ultimate value can be estimated based on observations  
of the ultimate value directly, which in this context, means using aggregated data. A more detailed, distribution-
free estimator based on estimates of the initial claim value, the closure probability, and development factors 
is constructed in this article. It is proved that this estimator is asymptotically unbiased and an approximate 
analytical formula is derived for its variance. The efficiency of this estimator is compared to the efficiency of the 
simple arithmetic average of the ultimate claim value. Results are illustrated on an example and complemented 
with a simulation. The example results in significantly lower variability of the detailed estimator. 
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INTRODUCTION 
In many actuarial tasks such as reserving or pricing, an estimate of the claim value is necessary. Usually, 
the focus is on the ultimate claim value that is the value at which the claim is closed. Prior to claim 
closure, the claim passes through the settlement process. Non-life insurers often collect detailed data 
about a variety of variables from the settlement process. In (Arjas, 1989), a mathematical description 
and a list of important variables is presented. Insurers, however, prefer traditional approaches and quite 
often aggregate their data prior to modelling. Three basic levels of aggregation can be distinguished: 1) 
Models based on aggregates from multiple claims. For example triangle schemes. 2) Models based on data 
from individual claims at its ‘ultimate’ state. 3) Models based on data collected throughout the settlement 
process, i.e. data containing whole claim ‘trajectories’ from its registration until its closure. Such detailed 
data are nowadays commonly available, however, rarely used in full detail. On the one hand, aggregation 
is usually connected with loss of information that can be used for efficient estimates. On the other hand, 
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if models are based on more granular data, more parameters are usually involved and, hence, higher 
estimation error may appear. In this article we derive and compare properties of two ultimate claim value 
(claim severity) estimators based on level 2 and level 3 aggregation of the above mentioned typology.  
The term ’ultimate claim value’ is preferred here to the term ’claim severity’ to distinguish the value  
at claim closure from its value during the settlement process.

In general insurance, models based on triangles, i.e. level 1 aggregation, are presently most popular 
and have been studied by many authors. See, for example, (England and Verral, 2002) for an extensive 
list. Estimates based on less aggregated data (level 2 or even 3) are studied by far fewer authors.  
The research is often focused on stochastic processes underlying the claim occurrence and its development. 
The theoretical background of individual claim level models was originally set in (Norberg, 1993)  
and extended in (Norberg, 1999). The author considered a full time-continuous model of the settlement 
process using a non-homogeneous marked Poisson process. Another model based on the marked processes 
using simulation techniques was published in (Larsen, 2007). A potential bootstrap algorithm to asses 
the sampling error is also outlined. A simulation model based on individual claims was also developed 
in (Antonio and Plat, 2014). In (Herbst, 1999), the author applies survival analysis to derive an analytical 
formula for the estimate of incurred but not yet reported claims. Estimates based on fitting the multivariate 
skewed normal distribution were developed in (Pigeon, Antonio, Denuit, 2013) and (Pigeon, Antonio, 
Denuit, 2014). The topic of individual claim modeling was, from a practical point of view, also analyzed  
in several consultancy articles such as (Taylor, McGuire, Sullivan, 2008) or (Murphy and McLennan, 2006) 
in the context of large claims. A similar model was also assumed in (Drieskens et al., 2012). Simulation 
studies such as (Pigeon, Antonio, Denuit, 2014) or (Antonio and Plat, 2014) proved, on real examples, 
that higher efficiency of prediction of liabilities can be achieved using an individual claims approach.

Estimators of the ultimate claim value based on level 2 aggregated data appear in many actuarial 
models. They appear in a variety of simple frequency severity models, in collective risk models,  
and in more complex schemes such as (Herbst, 1999) or (Huang et al., 2015). Many of the individual 
claim models mentioned above, such as (Pigeon, Antonio, Denuit, 2013) or (Pigeon, Antonio, Denuit, 
2014), are based on level 3 detailed data. To the author’s knowledge, a comparison of efficiency of severity 
estimators based on these two levels of data aggregation has not been tackled previously. We assume that 
claims follow similar process specification as in (Murphy and McLennan, 2006) and (Drieskens et al., 
2012). Each claim consists of a random initial registered value which is further adjusted by random number  
of random development factors that are independent but not identically distributed. See Formula (2).  
The first estimator considered is the simple arithmetic average of the ultimate claim value of all observed 
claims. This means it is calculated based only on data aggregated at level 2 of the above mentioned typology. 
This estimator does not consider the knowledge of the data from the whole settlement process, just  
the ultimate values. The second estimator (referred to as detailed) is based on the more granular level 
3 data. It is constructed as the estimate of the initial value of the claim at reporting multiplied by  
a weighted average of estimates of development factors, from initial to a particular development year, where  
the weights are estimated probabilities of the claim being settled in a particular development year. See 
Formula (41). The estimate is constructed as an empirical counterpart of the variable defined in Formula (2). 
There are no specific requirements on the distribution so the estimator can be considered distribution-free.

The detailed estimator requires much more variables to be estimated (probabilities of claim settlement 
in each development year, development factors for each development year and the initial claim value).  
On the other hand, it uses more data than the simple average. The main task is to quantify to which extent 
such granularity contributes to the efficiency of the estimate of the ultimate claim value. The questions 
answered in this article are: Is it worth to construct more detailed estimate? What is the gain in efficiency? 

An approximate formula of the variance of the detailed estimator is derived and compared  
to the variance of the simple average. Although it was not proved that the variance of the second estimate 
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is always lower than in the case of the simple average, the presented realistic application suggests that  
the simple average is much less efficient under practical conditions. If the true process follows our 
assumptions, the detailed estimator shows, in the example case, approximately 55% lower variance. 

The article is structured as follows: In the next section, the components of the ultimate claim value are 
introduced and the moments of the variables are derived. In Section 3, estimators of these components 
are constructed and their properties are derived. The main results are in Section 4 where the estimator 
of the ultimate claim value is constructed, its expected value and approximate formula for its variance 
are derived. It is further compared to the variance of simple arithmetic average. The formulas derived 
are applied on a realistic example in Section 5.

1 ULTIMATE CLAIM VALUE
We first define the ultimate claim value and some associated variables. Some relations and properties 
of these variables are stated. At the end, the first two moments of the ultimate claim value are derived. 

1.1 Basic Notation and Assumptions
The following notation is used:

1. Maximum development year is denoted ω.
2. The initial value is denoted X0. Its expected value and variance are denoted E(X0)=μ0  

 and .
3. Vector I = (I1,I2,…Iω )' is a vector indicating in which development year was the claim closed. For  

 a claim closed in k-th development year Ij = 1 for j = k and Ij = 0 otherwise. For simplicity no  
 re-openings are assumed and therefore . Expected value of Ij is denoted E(Ij)=pj. 

4. In every development year, the claim value is updated by a random development factor. Vector  
 of these incremental development factors is denoted D = (D1,D2, … Dω)'. 

5. Vectors of cumulative development factors is denoted F = (F1,F2, … ,Fω )' where Fj is defined  
 as . The adjective ‘cumulative’ will often be omitted. The expected value andvariance  
 of Fj are denoted E(Fj) = μj and . 

6. Development factor from a period j to a period k is denoted:

 . (1)

7. The ultimate claim value (the severity of the claim) is denoted X. It is defined as:

 . (2)

Variables X0, F and I will be referred to as the components of the ultimate claim value. Further notation 
for corresponding estimators is presented in Section 3.

The following is assumed: 
A 1.  Maximum development year ω is known and deterministic. 
A 2.  Development factors Dj are mutually independent. 
A 3.  Vector of development factors D is independent on the vector of indicators I. 
A 4.  Initial value X0 is independent on I and D. 
A 5.  The moments μ0,σ0

2,μj, and σj
2 are all finite.

All these assumptions are simplification of reality. Assumption 1 means that ’reasonably’ high maximum 
number of development years have to be chosen in order to cover almost all reasonably observable 
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cases on one hand and to have reasonable number of observations for the latest development years,  
on the other hand. Assumption 2 is also a simplifying assumption. Similar assumption is often assumed  
in aggregate models. This assumption allows derivation of analytic formulas for the variance  
of the estimators. Independence for given portfolio has to be tested prior to application of the estimators.

1.2 Properties of F and I
Assumption A3 means that technically we assume that claims develop even after the closure. 
Such development however does not influence the ultimate claim value. Due to Assumption A4 
X0 is also independent on F. Given the independence of Dj stated in Assumption A2, mean of j-th 
development factor is:

 . (3)

The expected value of  is then:

. (4)

Independence of the incremental development factors Dj means that factors Fj and jFk are also 
independent. For any j < k the relation Fk = Fj . jFk holds. We can write for the covariance of Fj and Fk, j < k

 (5)

Vector I always contains only one element equal to one and ω – 1 elements equal to zero. Vector I has 
multinomial distribution with parameters ν = 1 and p = (p1,p2, … ,pω) and therefore E(Ij) = pj,

. (6)
and

. (7)

A possible modification of the assumed model considering growth curves was published in (Pešta  
and Okhrin, 2014). The development factors are replaced by some parametric growth curves with number 
of parameters usually lower than ω. Lowering thenumber of parameters would lead to a more precise 
prediction, but it also requires backtesting of the growth curve’s fit.

1.3 Properties of the Ultimate Claim Value
In this subsection, moments of the ultimate claim value are derived based on moments  
of the components. Firstly, it is necessary to derive the variance of the sum of products Ij Fj which 
is further denoted ψ.

Lemma 1.  Under Assumptions A1, A2, A3, and A5 variance of the sum of products Ij Fj equals:
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 (8)

Proof. The proof of this lemma is in the Appendix in subsection A2. 

Theorem 1.  Under Assumptions A1–A5 the expected value of the ultimate claim value is:

, (9)

and the variance is:

. (10)

Proof. The variance of the variable X may be written using Formula (A6) from the Appendix as:

 (11)

After some algebraic operations this formula can be simplified to Formula (10).

2 ESTIMATORS OF THE COMPONENTS
As a first step to derive properties of the detailed estimator of the ultimate claim value, moments 
and covariances of estimators of the components and its multiples are derived. 

2.1 Random Sample and its Notation
All estimators are denoted with a ‘hat’ sign. Observations are denoted by adding additional index  
u to the variable. Random sample of a fixed size of n claims is assumed. Random vector of numbers 
of claims closed in each development year j = 1,2, … ,ω is denoted N = (N1,N2, … , Nω)'. Sum  
of the elements ∑Nj  = n. It is automatically assumed that conditioning by a random event (e.g.,  
in case of conditional expectation) means conditioning by an indicator of this random event. 

Random vector N may be thought of as the sum of the n independent observations of the vector 
I and therefore has also multinomial distribution, this time with parameters ν = n and again  
p = (p1,p2, … ,pω)'. The following relations hold:
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, (12)

, (13)

and

. (14)

Development factors Fj are only observed for claims which are closed in j or later. This means we have 
a random number of observations denoted  defined as:

. (15)

By definition the following implications hold for any k > j:

, (16)

, (17)

. (18)

In theory we have to consider a case for which all n claims are closed prior to the development year 
j and hence no observation of Fj is available for j, i.e.  = 0. The probability of such event is denoted  

 and equals:

. (19)

In practical cases  will be very close to 0 and also for all j if the sum in (19) is less then 1,

. (20)

As  might be thought of as an outcome of n independent trials with the probability of being closed 
in development year j or later, equal to , we may state that  has binomial distribution. 
First negative moment of   truncated at  = 0, denoted as  is defined as:

. (21)

2.2 Estimator of Probability of Claim Closure
For multinomial distribution, the maximum likelihood estimate of pj is the average of the observed 
indicators, i.e.

 . (22)
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Being the simple average, this estimator is unbiased:

, (23)

and its variance is:

. (24)

Estimates of the elements of vector p are not independent as, if in some development year more claims 
are closed, in other development years the number of closed claims will tend to decrease. The covariance 
of the estimates is, using (14),

. (25)

Lemma 2.  The expected value of  conditional on  equals:

, (26)

and covariance conditional on  and  equals:

. (27)

Proof. Proof of this lemma is presented in the Appendix in subsection 5.2.

2.3 Estimator of the Initial Value and Development Factors
The initial value  can be observed for every loss in the sample. Simple average over all individual 
losses observed, denoted as , is considered as a predictor of . Analogous approach may, however, 
be used for more advanced predictors, if necessary. The moments of this predictor are:

, (28)

i.e. the predictor is unbiased, and

 . (29)

There are two sources of randomness in the estimate of the development ratio Fj: 
1. The number of observations  defined in (15) available for the estimate of Fj which is the number  

 of losses that were closed in j-th development year and later. 
2. The actual observations of development factors . 

The estimator assumed if  = 0 is the average observed ratio, i.e. 

.
 (30)
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The number of observations  can also be 0 which slightly complicates the inference. We assume for 
the (theoretical) situation when  = 0 that there is an estimate  available from some external source, 
for which:

, (31)

. (32)

As mentioned above  will in practical tasks be very close to 0 and hence consideration of these 
external estimates is more formal than practical issue.

Lemma 3.  Under Assumptions A3 and A5 the expected value of the estimator  equals:

, (33)

and the variance equals:

 (34)

Proof. Proof of this lemma is presented in the Appendix in subsection A2.
In the special case, where the external estimate is unbiased, i.e. αj = μj, the estimate  is also unbiased. 

As the limit of  is 0, the estimate is asymptotically unbiased (even if αj ≠ μj). Further more, in the special 
case where the external estimate is unbiased, the first term of (34) equals to 0 and the formula reduces  
to somewhat intuitive form where the variance of the estimator is weighted average of the variance  
in the case of the external estimate and the variance of the simple average. Due to limit (20), the estimator 
is consistent as the influence of the variance of the external estimator vanishes as n is increasing. 

Lemma 4.  Conditional covariance of the estimators , j < k, conditioning on  > 0,  > 0 equals 
under Assumptions A2, A3, and A5:

. (35)

Proof. Proof of this lemma is presented in the Appendix in subsection A2.

Lemma 5.  The estimators  and  j, k = 1, … , ω are under Assumptions A3 and A5 conditioning  
on   > 0,  > 0 uncorrelated, i.e.

. (36)

Proof. Proof of this lemma is presented in the Appendix in subsection A2.

2.4 Properties of Products of the Estimators
In this section properties of the product of the estimators  and  are stated. First order 
approximation of the variance of the the product   is further denoted ϕj. First order approximation 
of the conditional covariance  is denoted as ξj,k.



METHODOLOGY

84

Lemma 6. Under Assumptions A3 and A5 the expected value of the product   equals:

, (37)

and the approximate formula for the variance equals:

, (38)

where  is derived in (33) and  is derived in (34). The product   is consistent.
Proof. Proof of this lemma is in the Appendix in Subsection 5.3.

For covariance of the product, , j < k is assumed. In order to derive the formula,  
it is necessary to cover different possible constellations of  and  being zero or grater than zero.  
It is necessary to cover situations ,  and . The combination 

 cannot appear for j < k due to implication (16). Using the Law of total covariance  
and approximate formula for the covariance of the product of random variables, the following lemma is proved:

Lemma 7. Under Assumptions A2, A3, and A5 the first order approximation of the conditional covariance 
 equals:

 (39)

               

and the unconditional covariance equals approximately:

.

 (40)

               

Proof. Proof of this lemma is in the Appendix in subsection A4.
On one hand, more precise approximations could be achieved by using stochastic expansions shown 

in (Hudecová and Pešta, 2013). On the other hand, more restrictive assumptions would be required.

3 ESTIMATOR OF ULTIMATE CLAIM VALUE
In this section we define the ultimate claim value estimator based on data collected over the whole 
claim settlement trajectory and derive its properties. The detailed estimator proposed is constructed 
as an empirical counterpart of Formula (2):

. (41)
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3.1 Properties of the estimator
Mean and first order approximation of the variance are derived based on the properties of the estimators 
derived in Section 1.

Theorem 2. Estimator  is under Assumptions A1–A5 unbiased:

, (42)

and the approximate variance is:

, (43)

where ϕ denotes approximate variance  and equals:

. (44)

Proof. Using the assumption of independence of Ij, Fj and X0 we can write for the mean:

 (45)

Using (37) and (28) we get Formula (42).
The approximate variance (44) of the sum of   is calculated using the first order approximations 

ϕj derived in (38) and ξj,k derived in (40) for the variances or covariances respectively.  is then 
calculated using Formula (A6) from the Appendix and inserting (28) and (29).

3.2 Asymptotic Relative Efficiency
Now, we compare the asymptotic efficiency of the detailed estimator of the ultimate claim value  defined 
in (41) with the simple average of the ultimate values of the claims observed. The simple average estimator 
is denoted . The variance of  is simply the variance of the ultimate claim value derived in (10) divided 
with the number of observed claims n. The asymptotic relative efficiency is then:

 , (46)

where:

 (47)
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and  is defined in (10). The first term of the numerator of (46) is identical to the middle 
term of  hence  is more efficient than simple average in case the following relation holds:

. (48)

Left hand side contains only characteristics of the initial loss X0. We may conclude that higher 
relative efficiency of  may be expected in case of high relative variability of X0. The right hand side 
is a fraction of complex sums of characteristics of both Fj and Ij for which some straightforward 
statements cannot be easily claimed, however, the following practical example suggests that the 
relative efficiency observed may be well below one (see Table 2).

4 PRACTICAL EXAMPLE
The properties of both estimators are illustrated on an example based on real data from motor third 
party liability bodily claims. Simulation study is presented to accompany the analytical results.  
All financial values are in EUR. The following ‘true’ values are assumed: 
• Maximum ω = 9 development years. 
• Gamma distribution with E(X0) = 6 704 and (X0) = 125216729 is assumed for the initial value X0. 
• Gamma distribution is also assumed for all development factors Fj, j = 1,2, … , 9. Moments of the 
variables are contained in Table 1. 
• Sample size (number of claims) n = 5 000. 
• Although probabilities of having no observation in j-th development year πj

(0) are negligible as maximum 
equals  π9

(0) = 2.1×10–10, we set formally also moments of the external estimates. Intentionally, the values 
are selected to be of a very low quality. Both the mean and the variance (α and β) of the external estimate 
is set twice the true values. Note that in the case of one observation, the variance of the estimate would 
be equal to the variance of Fj, i.e. would be β/2. 

The parameters shown in Table 1 imply the moments of the ultimate claim value X. The ‘true’ mean 
calculated using Formula (9) is E(X) = 7833 and the ‘true’ variance calculated using Formula (10)  
is   = 975670440. Based on these values and assumptions stated in Section 2.1, random portfolios 
of n claims were generated. For each such portfolio, both estimators of the ultimate claim value   and  

Table 1 Parameters used as the true values in the simulation. E(Fj) and Var(Fj) are calculated based on Formulas
 (3) and (A6)

j E(Ij) = pj E(Dj) Var(Dj) E(Fj) = μj Var(Fj) = σj

1 0.236 1.27 1.73 1.27 1.73

2 0.198 1.08 0.98 1.38 5.29

3 0.138 0.97 0.31 1.34 7.27

4 0.216 0.84 0.13 1.13 6.25

5 0.124 0.79 0.12 0.89 4.78

6 0.050 0.82 0.09 0.73 3.70

7 0.019 0.83 0.08 0.60 2.87

8 0.014 0.76 0.08 0.46 1.93

9 0.004 0.84 0.08 0.38 1.52

Source: Own construction
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Table 2 Comparison of the variance of the estimate  based on micro data and the simple average  
Analytic result Simulation

ψ = Var(∑ Ij Fj) 4.729 .  

ϕ = Var(∑  ) 0.001 0.001  

Var( ) (micro data) 89 293.000 88 638.000  

Var( ) (simple avg.) 195 108.000 192 674.000  

Var( )/Var( ) 0.458 0.460  

limn→∞ Var( )/Var( ) 0.457 .  

Source: Own construction

were calculated. The simple average of the ultimate claim value is calculated directly  from the values 
observed. For the detailed estimator  all the estimators involved such as initial claim size, probabilities 
of claim closure for each development year, and development factors for each development years are 
calculated. 

Portfolios were generated randomly 10 000 times and properties of both estimators  and  were 
calculated from the simulations. Both analytic as well as simulated results are for the experiment presented 
in Table 2. Given the true process follows Assumptions A1–A5, the gain in efficiency using the detailed 
data to estimate the ultimate claim value is rather high, approximately 55%. The differences in distributions  
of the estimators are demonstrated in Figure 1. The box plots clearly show smaller variance of the estimator 

. The relative efficiency as a function of the sample size n is plotted in Figure 2.

Figure 1 Boxplot of the simulated estimates for the simple average  and estimate based on detailed settlement 
 process data 

Source: Own construction
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Figure 2 Relative efficiency as a function of the sample size n and its asymptote

Source: Own construction

CONCLUSION
Models based on aggregated data are rather common in general insurance. Models based on individual 
data are generally more complex, requiring more calculations and, consequently, more computer time 
and human capacities. It is not obvious at first sight if this extra effort actually leads to higher efficiency 
as the number of parameters involved is usually also higher and hence higher estimation error occurs.  
In this article, we focused on one particular quantity – the ultimate claim value. A simple average, 
which would usually be the most common estimator employed, was compared to an estimator based  
on the more detailed data collected during the whole settlement process. It was shown that the estimator  
proposed is asymptotically unbiased. The approximate formula for its variance was derived  
and the difference in efficiency from the simple average was evaluated. The estimator is distribution-free. 
Although it was not proven that the efficiency of the more complex estimator for the assumed process  
would always be higher, it can be concluded that rather high gains in efficiency may be achieved.  
In the example presented, the increase of efficiency is almost 55%. 
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APPENDIX
A1 Some Auxiliary Formulas
A1.1 Variance of product of random variables 

Lemma 8. The variance of the product of two finite random variables A and B is:

 (A1)

Proof. This formula is derived setting:

 (A2)

and inserting:

, (A3)

and
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. (A4)

A1.2 Variance of product of independent random variables 
The variance of the product of two finite uncorrelated random variables A and B is:

 (A5)

This formula follows directly from inserting  = 0 in Formula (A1) in Appendix. If the variables 
A and B are independent, also  = 0, and Formula (A5) reduces to:

. (A6)

A1.3 Approximate covariance of product of random variables
The approximate formula for the covariance of the product of random variables is stated in (Kendall 
and Stuart, 1977):

 (A7)

The exact formula is stated in (Bohrnstedt and Goldberger, 1969).

A2 Moments of the components and estimators
A2.1 Proof of Lemma 1
Variance of the sum can be written as:

. (A8)

The variance of the product  contained in the first term can be derived using Formula (A6) 
and inserting (6) for .

 (A9)

The covariance contained in the second term of (A6) is for j < k using the notation (1):

  
 (A10)
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As Ij Ik is always equal to 0 due to the fact that if Ij=1, Ik must equal to zero and vice versa,  = 0 
and we can write using (4):

. (A11)

If we now insert (A9) and (A11) into (A8), we get Formula (8).

A2.2 Proof of Lemma 2
Implication (18) implies also:

 (A12)

and therefore . Using the iterated expectations on  gives Formula (26). 
For j < k joint probability that  > 0 =  > 0 equals to probability that  > 0 as the combination 

 cannot appear due to implication (16). Using the iterated expectations we can write:

. (A13)

Inserting this relation and Formula (26) and (14) in the covariance formula, we get:

. (A14)

Inserting further:

 (A15)

and using (7) yields Formula (25).

A2.3 Proof of Lemma 3
As Fj and Ij are independent we may also state that  and Fj are in the case  > 0 independent. Further-
more, given the value of , observations Fj,u, u = 1, … ,  is series of independent identically distributed 
variables. Using the iterated expectations the expected value of the estimator equals:

, (A16)

where  denotes expectation over  conditional on I(  > 0). Inserting (31) and:

 (A17)

yields Formula (33). 
The variance of the estimator  can be derived using the Law of total variance: 
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. (A18)

We can write for first term:

 (A19)

And for the second term:

.
 (A20)

Inserting (32) and:

.
 (A21)

and using the notation (21) we get Formula (34).

A2.4 Proof of Lemma 4
Let us assume the covariance of the estimators  for j < k conditional on some fixed ,  > 0.  
The inequality j < k implies  as  contains all claims contained in .

.
 (A22)

We may write for the first term:

. (A23)

The variables  are independent. As we assume random sample, we may also state that the vari-
ables  and  are independent as long as u ≠ l. The double sum contains min( , ) =  terms for 
which u = l and  –  terms for which u ≠ l. Therefore we may write:
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 (A24)

The second term of covariance (1) equals:

. (A25)

Therefore inserting (A24) and (A25) into (A22) and using (5), we get:

. (A26)

Taking the expectation over  conditional on  > 0 and the notation (21), we get Formula (35).

A2.5 Proof of Lemma 5
For any j, k = 1, … ω, the conditional expected value of the product   equals to:

 (A27)

which proves (36).

A3 Moments of Product of the Estimators
A3.1 Proof of Lemma 6
The expected value of the product   can be expressed as:

. (A28)

Implication (18) implies that the first term equals 0. 
The expectation in the second term is:
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 (A29)

Using (26) and inserting (A29) into (A28), we get Formula (37). 
The estimators  and  are generally dependent. The variance of the   can be derived using  

Formula (A5): 

 (A30)

The covariance of the squares of the estimators  can not be generally derived. Its first  
order approximation equals to:

. (A31)

Lemma 5 states that the estimators  and  are uncorrelated. Formula for the variance of product  
of independent estimators (A6) is therefore approximately valid for uncorrelated variables.

 (A32)

If we collect  and insert the results (24) and (23) we get the Formula (38). The consistency  
is implied by the fact that  is a consistent estimator and hence both terms has limit zero.

A4 Covariance of Product of the Estimators
Situations of random sample listed in the first column of Table A1 need to be considered.  
An approximate formula for the covariance conditioning on the first situation,  > 0  
and  > 0, is first derived. 

A4.1 Proof of Lemma 7
Using Formula (A7) and Lemma 5, we get:

Table A1 Conditional expected values of  and   conditioning on different constellations of  and 

Condition Probability E( ) E( ) E( )

> 0,  > 0 1 – πk
(0)

> 0,  = 0 πk
(0) – πj

(0) 0 0

 = 0, πj
(0) 0 0 0

Source: Own construction
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.
 (A33)

Inserting Formulas (A17), (26), (35) and (25) we get:

 , (A34)

which is Formula (39). 
Second column of Table 3 contains probabilities of the three situations. The Law of total covariance  

is applied: 

.

 (A35)

Due to implication (A12), multiples containing  conditioning on  all equal 0. Therefore  
conditional covariance in the first term in both cases where  equals 0 and we may write:

.
 (A36)

Table A1 can also be used to calculate the second term of Formula (14). Based on this table we may write:

 (A37)

, (A38)

. (A39)

The covariance  is then:
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 (A40)

Inserting (5) and (7) in (39) we get Formula (40).


