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Abstract

Finite mixture of regression models are a popular technique for modelling the unobserved heterogeneity 
that occurs in the population. This method acquires parameters estimates by modelling a mixture 
conditional distribution of the response given explanatory variables. Since this optimization problem appears  
to be too computationally demanding, the expectation-maximization (EM) algorithm, an iterative algorithm 
for computing maximum likelihood estimates from incomplete data, is used in practice. In order to specify 
different components with higher accuracy and to improve regression parameter estimates and predictions 
the use of concomitant variables has been proposed. Based on a simulation study, performance and obvious 
advantages of concomitant variables are presented. A practical choice of appropriate concomitant variable  
and the effect of predictors' domains on the estimation are discussed as well.2
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INTRODUCTION 
The basic requirement for the proper use of a standard linear regression model is a homogeneity  
in the studied population. If this assumption is violated and a standard regression model is inapplicable 
due to several heterogeneous groups in data, an alternative approach to modelling by means of mixture 
of regression models can be utilized (DeSarbo and Cron, 1988; McLachlan and Peel, 2000). While  
a standard regression mainly aims to estimate regression parameters, a mixture of regression models  
is also used as a tool for data clustering and therefore works as a clusterwise regression.

Mixtures of linear regression models, originally called switching regressions, are a special case  
of mixture density models (also known as a mixture of distributions) that were initially studied by means 
of a moment-generating function (Pearson, 1894). Recently, however, a likelihood point of view has been 
preferred for mixture models with a fixed number of components. A standard technique to obtain the 
maximum likelihood estimates is the expectation-maximization (EM) algorithm (Dempster et al., 1977).
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In addition to the method of moments and the maximum-likelihood approach, a variety of other methods  
have been proposed for estimating parameters in mixture densities. These methods include graphic 
procedures; an estimate determined by a least squares criterion in the spirit of the minimum-distance 
method; a procedure based on a linear operator reducing the variances of the component densities;  
the confusion matrix method and related methods; a stochastic approximation algorithm; and a minimum  
chi-square estimation. A short description of these and related methods can be found in Redner  
and Walker (1984) along with necessary references. 

Modelling of unobserved heterogeneity using a maximum likelihood methodology is presented for 
instance in Bengalia et al. (2009), De Veaux (1989), DeSarbo and Cron (1988), and Faria and Soromenho  
(2010). An extensive review of finite mixture models can be found in McLachlan and Peel (2000).  
The methodology of mixtures of regression models can be applied in various research fields, such  
as climatology, biology, economics, medicine and genetics; see e.g. Grün et al. (2012), Vaňkátová  
and Fišerová (2016), and Hamel et al. (2016).

Grün and Leisch (2008) proposed the concomitant variable models for the component weights that 
allow to allocate the data into the mixture components through other variables called concomitant. This 
extension can provide both more precise parameter estimates and better components identification. 
Since the concomitant variable is still a new concept in mixture modelling, the aim of this paper is to 
evaluate its role. Accordingly, a simulation study was conducted and results concerning the impact of the 
concomitant variable on the model quality are presented. Both precision of regression parameters and 
clusterwise properties of the model are addressed in cases of categorical and continuous concomitant 
variables. A practical choice of appropriate concomitant variable and the effect of predictors' domains 
on the estimation are discussed as well.

This paper is structured as follows. In Section 1, some fundamentals of mixtures of linear regression 
models with and without concomitant variables are presented. The theory behind parameters estimation 
is summarized in Section 2. Section 3 is dedicated to a simulation study investigating the performance 
of mixture models with and without concomitant variables. At the end, the conclusions of the study are 
drawn and additional comments are given.

1  REGRESSION MODELS
1.1 Mixtures of regression models
A mixture distribution (Pearson, 1894) is the probability distribution of a random variable obtained 
from a set of other random variables in such a way that, firstly, a random variable from the set is 
drawn according to given probabilities that sum to one; and that, secondly, the value of the selected 
variable is realized. Formally, the probability density function f can be represented by a convex 
combination of probability density functions fi:

 , (1)

where fi are called component densities and  are positive mixing proportions that sum  
to one. A Gaussian mixture distribution assumes that all the data points are generated from a mixture 
of a finite number of Gaussian distributions with unknown parameters (McLachlan and Peel, 2000).

Introduced by Goldfeld and Quandt (1976) as switching regressions, the mixture of regression models 
is formed analogously to the mixture distribution (1). Let Yj  denote the response variable, and let xj 
denote the vector of predictors for the jth subject. Assuming the random errors are normally distributed 
and subpopulations are present within an overall population, the response variable Yj is given as a finite 
sum (mixture) of conditional univariate normal densities φ with the expectation , and the variance 
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, ... , c. Following the mixture models structure, the conditional density of Yj | xj is defined  
by (Bengalia et al., 2009):

. (2)

The symbol  denotes the vector of all unknown parameters for a mixture of regression models with 
c components:

,

where  denotes the q-dimensional vector of unknown regression parameters for the ith component and  
is the unknown error variance for the ith component. The mixing proportions  satisfy the conditions 

 and . A more transparent way of expressing a mixture of regression models is:

 (3)

where  are independent random errors with a normal distribution N(0, 𝜎2
� ), � = 1, ... , 𝑐, 𝑗 = 1, ... , 𝑛.

1.2 Mixtures of regression models with concomitant variables
The mixture of regression models consists of c components where each component follows a specific 
parametric distribution. Each individual component has been assigned a weight indicating the prior 
probability for an observation to come from this component. Hence, the mixture distribution is given by 
the weighted sum over c components with weights corresponding to the prior probabilities. If the weights 
depend on further variables, the latter are referred to as concomitant variables. The mixture of regression 
models with concomitant variables was introduced and is described in detail by Grün and Leisch (2008).

The mixture of regression models with s concomitant variables is in the form of:

, (4)

where  denotes the s-dimensional vector of concomitant variables for the jth observation.  
The symbol  denotes the vector of parameters of the concomitant variable model for the ith component.  
The dimension of  relates to the chosen concomitant model and the dimension of concomitant variables. 
Dimensions of these vectors remain the same over all observations.

The set of unknown parameters for a mixture of regression models with concomitant variables with 
c components is:

.

The component weights  need to satisfy conditions:

 (5)



METHODOLOGY

64

.

Although the function of a concomitant variable model may have an arbitrary form, it has to fulfill 
the conditions (5). In this paper, a multinomial logit model for the  is considered, as seen below:

, (6)

with  and . This settings means that the first component is a baseline. The vector
 is s-dimensional,  provided the model contains s concomitant variables (Grün  

and Leisch, 2008).
A classical linear regression model can be applied to heterogeneous population problem only in a case 

when the component membership of every observation is deterministically known or described by the 
observable random variable. As the result of the first option (deterministically determined membership), 
c independent regression models are analyzed separately. Concerning the latter scenario, the cluster 
identification information in a form of a categorical random variable is included in the model as dummy 
variables (indicators of categories) together with interactions between predictors. However, both suggested 
approaches are inapplicable in the situation discussed in this paper since the cluster membership  
of observations is considered to be latent. 

The categorical concomitant variable can be potentially used in a classical linear regression model  
as a random variable carrying the information about a cluster membership but the effect of such a variable 
on the estimated model is highly exaggerated. Also, a number of other problems arise in this case. For 
example, there is a problem with a number of categories versus a number of components. In addition,  
it is not ideal that the assignment of an observation to the cluster is no longer weighted but fixed as 1 or 0. 

Mixtures of regression models are frequently used specifically for theirs clustering properties. Unlike 
classical clustering methods, mixture regression models are able to deal with clustering of the data 
following a certain function, therefore we refer to the clusterwise regression method.

2  PARAMETERS ESTIMATION
In order to obtain parameters estimates for a standard mixture of regression models with a fixed 
number of components c, the log-likelihood function is maximized:

 . (7)

Within the framework of mixture models the observations are viewed as an incomplete data. The 
data consists of triples , where  is an unobserved vector indicating from which mixture 
component the observation  is drawn. More precisely, z  is equal to one if the observation 

 comes from the ith component; otherwise z  is zero. These values z  are unobservable and 
therefore treated as missing, and the data are augmented by estimates of the component memberships, 
i.e. the estimated posterior probabilities  (McLachlan and Peel, 2000). Using the Bayes rule, any jth 
observation can be assigned to the ith cluster with a probability given by:

 . (8)
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Since mixing proportions sum to unity, the log-likelihood function can be optimized using the Lagrange 
multipliers method with  constraint. In order to obtain stationary equations, we compute 
the first order partial derivatives of the augmented log-likelihood function and equate them to zero.  
In the next step, it is a matter of few simple modifications to acquire a new system of equations obviously 
corresponding to stationary equations of another optimization problem formulated as (DeSarbo  
and Cron, 1988):

 . (9)

The function (9) is called the expected complete log-likelihood due to the fact it works with  
the estimated posterior probabilities  instead of unobservable values z . This particular structure gainfully 
lends itself to the development of the EM algorithm (Dempster et al., 1977), an iterative procedure which 
alternates between an Expectation step and a Maximization step. The EM algorithm takes advantage  
of the expected likelihood that is in general easier to maximize than the original one. 

The EM algorithm is widely exploited in practice. The estimators are viewed as some form of a local 
maximum likelihood estimator (Behboodian, 1970). However, it is not guaranteed that the EM algorithm 
provides a global maximum. A complication may occur in the case of normal mixtures with component 
specific variances, where the log-likelihood is unbounded and attains  for certain values of the 
parameter space. For this specific case, the EM algorithm adds to its advantage and provides, according 
to many practitioners, rather reasonable solutions unlike algorithmic approaches of global character such  
as a gradient function based techniques. Although the EM algorithm is often used, there is surprisingly 
little theoretical knowledge available for this estimator. In fact, it might be unclear to which extent 
asymptotic properties of the EM algorithm estimators, such as consistency, asymptotic efficiency  
and asymptotic normality, hold (Nityasuddhi and Böhning, 2003).

In the E-step, posterior probabilities  are estimated. Consequently, the expected complete  
log-likelihood is maximized in the M-step and the vector of unknown parameters  is updated.  
The (k+1)th iteration of the EM algorithm can be summarized as follows:

E-step: Given the observed data y and current parameter estimates  in the kth iteration, replace 
the missing data z  by the estimated posterior probabilities:

 . (10)

M-step: Given the estimates  for the posterior probabilities  (which are functions of  ), 
obtain new estimates  of the parameters by maximizing the expected complete log-likelihood:

 
.
 (11)

This maximization problem is equivalent to solving the weighted least squares problem, where the vector 
 of observations and the design matrix  are each weighted by .

That means that we get:

 (12)
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for estimates of regression parameters, assuming the  matrix   
is a diagonal matrix of weights, and:

 (13)

for the error variance estimate.
Thus, the entire set of  is derived by performing c separate weighted least squares analyses. In the 

same spirit,  is estimated and, lastly, the estimates of the mixing proportions  are updated using:

. (14)

The principle of parameters estimation is very similar for the mixture of regression models with 
concomitant variables. The expected complete log-likelihood function can be derived analogously  
to the previous case. Thus, the EM algorithm for the mixture models with concomitant variables follows 
the following two steps (Grün and Leisch, 2008):

E-step: Given the observed data  and current parameter estimates   in the kth iteration, replace  
the missing data z  by the estimated posterior probabilities :

 . (15)

M-step: Given the estimates  for the posterior probabilities  (which are functions of  ), 
obtain new estimates  of the parameters  by maximizing:

 , (16)

where:

 (17)

and:

 . (18)

Formulas  and  can be maximized separately. The formula  is maximized using the weighted ML 

estimation of linear models with weights . The maximization of  gives new estimates 
, � = 1, ... , 𝑐. The term  is maximized by means of the weighted ML estimation  

of multinomial logit models and provides new estimates .
Initial values of regression parameters may be based on a random division of observations into c 

components, i.e. on initial  probabilities, where for each observation  only one of these c probabilities 
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equals to 1 and the other ones are set to zero. The EM algorithm is stopped when the (relative) change 
of the log-likelihood is smaller than a chosen tolerance.

The number of components can be chosen by comparing information criteria such as Akaike information 
criterion (AIC) or Bayesian information criterion (BIC) of various models, each with a different number 
of components.

3  SIMULATION STUDY
A simulation study is conducted to assess the performance of both a standard mixture of regression 
models and a mixture of regression models containing concomitant variables. The standard regression 
model could only be applied in the case of statistically significant concomitant variables that could be 
used as additional explanatory variables. However, such a model lacks the clustering properties that 
are essential in the following analysis; therefore, only mixtures of regression models are considered.

The study is mainly focused on the impact of the concomitant variable on the model quality (the 
accuracy of estimation and clustering), practical choice of appropriate concomitant variable and the 
effect of predictors' domains on the estimation. Accordingly, data are simulated under a two and three 
component mixture of linear regressions and concomitant variables are considered either categorical 
or continuous. The statistical software R (R Core Team, 2016) containing several extension packages 
for the estimation of a mixture of regression models is used. The results are built on flexmix package, 
introduced in Leisch (2004).

3.1 Design of the study
Each observation (𝒙𝑇

𝑗, 𝑦𝑗)𝑇, 𝑗 = 1, ... , 𝑛, is generated by the following scheme. Firstly, the component 
membership is determined. Assuming the observation comes from the ith component with the probability 

, it is possible to randomly select the component membership by means of the outcome of the multinomial 
distribution with mixing proportions as multinomial probabilities. With established membership, the 
value of the predictor  for the assigned ith component is randomly generated from a given distribution 
(a uniform distribution on the interval  or a normal distribution with parameters  and ). Next, 
a normal random error  with the mean 0 and variance  is generated. Finally, the observed value  is 
computed using the regression model form  , where the true values of regression parameters   
are considered. Two typical positions of the true regression lines are considered, in which the lines are 
either parallel or concurrent. The effect of these alternative positions is also studied.

In order to examine the performance of both mixture models (with and without a concomitant 
variable), the following statistical characteristics of estimators of  are calculated:

• The mean square error of the regression parameter estimates over all replications:

, (19)

where  is the pth parameter of the vector . While  is a true parameter,  is the final estimate  
of a given parameter in the mth replication, . We desire to examine MSEPAR for all 
mixture model parameters, i.e. for regression coefficients  , error variances , and mixing proportions 

. For mixing proportions, however, the true values of component weights are not constant 
and vary over replications, denoted as  (with increasing sample size, these values converge to the true 
mixing proportions). Hereby, the mean square error of mixing proportions is computed according to:

. (20)
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• The mean variance of estimated regression parameters:

 . (21)

Here,  represents the estimate of a variance of the pth parameter estimator in the mth 
replication. The variance-covariance matrix of the regression parameters estimators is estimated  
by the inverted negative Hesse matrix of the full likelihood of the model (Grün and Leisch, 2008).

• The misclassification error:

 , (22)

where  is the true component membership of each observation and  is its estimate.  
The misclassification error states a mean ratio of incorrectly assigned observations over all replications.

For the simplification, mixtures of regression lines are only considered in the following simulations. 
This simplification is not restrictive. The similar results are also valid in more complex regression models 
such as models with a polynomial trend.

3.2 Two component mixtures of linear regression models
For two component models, samples of three different sizes  are considered. Values  
of the predictor  are drawn from a uniform distribution on the interval  for both components. 
True parameter values (regression lines' coefficients and variances) are shown in Table 1 along with true 
mixing proportions. Scatter plots for samples of size 50 together with true regression lines are demonstrated 
in Figure 1. The number of replications is set to  considering how slow the algorithm is in practice.

The concomitant variable is chosen as a categorical variable with four levels. Each of these levels labels  
the corresponding component with approximately 90% accuracy; values 1 and 2 label the first component, 
while values 3 and 4 label the second one. Since the concomitant variable is a univariate categorical variable, 
we can create three dummy variables that reflect the original variable in terms of a linear regression model. 

Figure 1  Scatter plots for two configurations of mixtures of two regression lines of a sample of size 50 together
 with true regression lines

Source: Own construction
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Let us consider for example the level one as the reference category. Then, every level of the concomitant 
variable can be replaced with the 4-dimensional vector , where  is an indicator 
of the level  for the jth observation, i.e.  if the jth observation is labelled to the lth level, otherwise 

. The resulting logit model is of the form:

, (23)

meaning that the 90% accuracy of classification by a concomitant variable corresponds to a vector  
of parameters  and . 
The vector  is set to zero as the theory in Section 2 determines. To demonstrate the basic scheme  
of a concomitant model, we aim to show the selected probabilities  given by the multinomial logit 
model (23); for the clarity, the level  is also indicated:

 , (24)

 , (25)

 , (26)

 . (27)

Software R provides a detailed summary for the concomitant model, so that both parameters estimates 
and their significance test statistics are displayed.

The effect of a concomitant variable on the estimation in mixture models is visible on the 
resulting statistical characteristics of estimators, such as the mean square errors (MSEPAR), 
the mean variances (VAR) and the misclassification errors , see Tables 2 and 3. It is rather 
obvious the concomitant variable helps to optimize parameters estimates in both regression lines 
configurations (parallel and concurrent). Its benefit is apparent mainly for a small sample size.  
In case of a parallel model of a sample of size 50, the MSEPAR is about 1.7-fold to 3.2-fold smaller 
for a concomitant model than for a standard mixture. With an increasing sample size, the MSEPAR 
from both models are comparable. The accuracy of estimators is slightly higher in a model with 
a concomitant variable. The same tendency is also valid for the accuracy of mixing proportions 
(Table 3). For two component mixtures, the MSEPAR of both mixing proportions is the same. 
The MSEPAR of  is minor in both mixture models, and the difference is most significant for 
the parallel position of regression lines. It is less than 0.1%, with the exception for a sample  
of size 50, when the mixture model with a concomitant variable is used. For the standard mixture, 
the MSEPAR ( ) is 2-fold greater for both parallel and concurrent position, except sample size  

Table 1  True parameter values for a two component mixture of regression lines

Position β10 β11 σ1
2 β20 β21 σ2

2 π1 π2

Parallel 100 3 15 5 2 20 6/10 4/10

Concurrent 10 –2 15 5 –10 20 6/10 4/10

Source: Own construction
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of 50. For the smallest sample size in this study, the difference in MSEPAR of  is more significant 
considering parallel configuration of regression lines. In this case the model with a concomitant 
variable achieves more than 9-fold better results in  estimation.

In addition, the misclassification error is considerably smaller when additional information 
on membership of observations is taken into account (Table 3). The misclassification error also 
depends on the configuration of regression lines in the mixture. For the mixture of concurrent 
lines, the misclassification error is more than 10% when the standard mixture model is used, while 
it decreases by half using the concomitant model. The classification is better for parallel regression 
lines. Although the misclassification error is still worse in the standard mixture (2% in contrast 
to 0.6% for a sample of size 50), with an increasing sample size the differences become negligible 
(0.6% and 0.3% for a sample of size 300). 

Table 2  The mean square error (MSEPAR) and the mean variance (VAR) of the regression parameters, and standard 
error estimates for a two component mixture of regression models

Parallel

MSEPAR β10 β11 σ1
2 β20 β21 σ2

2

n = 50
standard  24.1535  0.4206  10.3827  74.1701  1.1376  32.1636 

concomitant     8.7147   0.1405  4.9659   44.6211  0.3585  14.7015 

n = 100
standard   7.1550   0.1165  3.5546   13.8645  0.3098  8.7427  

concomitant  4.0437   0.0606  1.8087   14.9526  0.1335  6.7200  

n = 300 
standard   1.7086   0.0244  0.7518   5.0777   0.0452  1.9845  

concomitant  1.3909   0.0166  0.6388   4.3677   0.0403  1.6901  

VAR

n = 50
standard  8.6111   0.1200  0.0207   33.4614  0.3381  0.0310  

concomitant     7.4635   0.1003  0.0181   25.9662  0.2717  0.0273  

n = 100
standard   4.1556   0.0566  0.0098   13.4476  0.1390  0.0157  

concomitant  3.8123   0.0517  0.0091   13.6837  0.1399  0.0144  

n = 300   
standard   1.3314   0.0180  0.0033   4.6263   0.0464  0.0052  

concomitant  1.2862   0.0173  0.0030   4.5854   0.0454  0.0048  

Concurrent

MSEPAR β10 β11 σ1
2 β20 β21 σ2

2

n = 50
standard  12.6919  0.1459  5.9812  56.5914  0.5026  18.6374 

concomitant     9.1072   0.1245  5.2192  45.6830  0.3635  14.0798 

n = 100
standard   4.6781   0.0528  2.8718  28.0681  0.2231  9.3213  

concomitant  4.5898   0.0609  2.4462  16.5644  0.1752  5.8688  

n = 300 
standard   1.4862   0.0210  0.8740  7.1206   0.0641  2.5656  

concomitant  1.2614   0.0155  0.7271  5.9025   0.0569  2.4797  

VAR

n = 50
standard  8.9620   0.1091  0.0258  39.0396  0.3477  0.0371  

concomitant     8.4352   0.1076  0.0206  31.1324  0.3036  0.0303  

n = 100
standard   4.5738   0.0542  0.0125  20.3584  0.1774  0.0189  

concomitant  3.9854   0.0506  0.0103  16.3407  0.1526  0.0159  

n = 300 
standard   1.5218   0.0181  0.0041  6.6889   0.0582  0.0062  

concomitant  1.3803   0.0177  0.0034  5.2361   0.0489  0.0054  

Source: Own construction
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It should be noted that similarly to other 
clustering problems it is not guaranteed in general 
that the misclassification error converges to zero 
as n tends to infinity. It rather converges to some 
fixed value depending on the variance of parameter 
estimators and the distance or the angle between 
regression lines.

It is worth mentioning that even a random 
choice of a concomitant variable (a concomitant 
variable is generated as a completely random 
variable with zero correlation to the observation's 
component membership) does not affect this kind 
of mixture models in a negative way. It merely 
causes that the results given by a model including 
the concomitant variable are comparable to the 
results of a standard mixture model. This is due to 
the fact that a multinomial logit model describing  

Table 3 The misclassification errors  and the mean square errors for the estimate of the first mixing   
proportion (MSEPAR( )) for a two component mixture of regression lines

n = 50 n = 100 n = 300

Position standard concomitant standard concomitant standard concomitant

Parallel  0.0209 0.0061 0.0080 0.0038 0.0057 0.0034 

Concurrent  0.1112 0.0502 0.1083 0.0437 0.1040 0.0416

MSEPAR( )
Parallel  0.0019 0.0002 0.0002 < 0.0001 < 0.0001 < 0.0001                                  

Concurrent  0.0028 0.0017 0.0014 0.0007 0.0004 0.0002                    

Source: Own construction

Figure 2 The scatter plot of a three component  
 mixture of a sample of size 50. True regression  
 lines visualized

Source: Own construction

Figure 3 Fitted regression lines via a standard mixture of regression lines (left) and a mixture model with  
  a continuous concomitant variable (right)

Source: Own construction
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the effect of a concomitant variable on mixing proportions is only secondary in a process of clustering. 
A possible contribution of concomitant variables can be assessed by statistical significance of parameters 
in a multinomial logit model (6).

The mixture model tends to maintain its behaviour no matter how many categories the concomitant 
variable has. Favourable characteristics of mixture models containing concomitant variables are preserved 
even when the concomitant variable is continuous. The superiority of the mixture of regression models 
using concomitant variables does not deteriorate with a rising number of components.

3.3 Three component mixtures of linear regression models
In this section, a three component mixture and a continuous concomitant variable represented  
by the normally distributed predictor itself are investigated. The aim is to show how problematic the usage 
of mixture models is when components are defined on different parts of the predictor space, which is in our 
case the x-axis. In other words, if the values of the predictor x are generated from a uniform distribution, 
the interval   is not the same for all components. Assuming normally distributed predictor,  
the mean  is different for each component. Even relatively small nuances significantly affect estimates 
in a negative way, as it can be seen in the following example. In this type of a configuration of mixtures 
of regression functions, the estimation can be improved by using the predictor as a concomitant variable.

The design of the mixture model containing three regression lines is presented in Table 4. The predictor 
x is considered as a concomitant variable  and the logit of the mixing proportion  is assumed  
to be a linear function of a concomitant variable, as seen below:

. (28)

Let us recall that the vector  is set to zero. Apparently, the mixing proportions can be expressed as:

. (29)

An example of such a mixture for a sample of size 50 is visualized in Figure 2. Apart from visualization 
of a data coming from a given three component mixture, true regression lines for individual clusters 
are demonstrated. As it was indicated above, this particular mixture of regression models causes severe 
inaccuracy in estimates. This problematic phenomenon is noticeable in Figure 3, where one fitted 
regression line from a standard mixture model is completely inaccurate due to incorrect classification, 
while a model with a concomitant variable fits all lines correctly.

In this type of configuration, a standard mixture model in many cases does not even estimate the right 
number of components, let alone remotely accurate regression parameters and component memberships 
of observations. 2 000 simulations were performed and the ratio of these highly imprecise estimates was 
79% for a sample size of 50 and even 93% for a sample size of 300 (Table 5), which indicates that this 

Table 4  True parameter values for a three component mixture of regression lines and probability distributions 
of a predictor

reg. parameters
β10 β11 σ1

2 β20 β21 σ2
2 β30 β31 σ3

2

150 1.2 10 40 –4 40 40 –1 10

mixing proportions 3/10 5/10 2/10

Source: Own construction
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is a systematic effect. Conversely, the proportion of inaccurate estimates obtained from a model with a 
concomitant variable is significantly smaller, accounting for only 27% for a sample size of 50 and decreasing 
to 6% for a sample size of 300. The estimates so dissimilar to the true parameter values that individual 
components cannot be recognized or efficiently identified were considered highly inaccurate. In practice, 
acceptance intervals for regression parameters  from a given component may be used. These intervals 
are as wide as possible to allow identification of a component and its distinction from the remaining 
components in the model. If no component or more components correspond to some acceptance interval, 
the whole mixture model is marked as inaccurate (see Figure 3, left).

In order to evaluate the quality of estimates, all entirely inaccurate estimated models were identified 
and discarded. Quality characteristics for both types of models evaluated from 200 correctly estimated 
models are reported in Table 6.  In contrast to the previous simulation study (Table 2), the superiority  
of a model with a concomitant variable is not so apparent and the accuracy of estimators from both 
models is comparable. The misclassification error is still much worse in a standard mixture and the same 

Table 5  The ratio of entirely inaccurate estimates of parameters in a three component mixture of regression lines 
with a different space of the predictor from 2 000 simulations. The misclassification errors are evaluated 
from 200 correctly fitted models as well as the mean square errors for mixing proportion estimates

Table 6 The mean square errors (MSEPAR) and the mean variances (VAR) of the regression parameters,  
and standard error estimates for a three component mixture of regression lines with a different space  
of the predictor. Characteristics are calculated from 200 correctly fitted models

n = 50 n = 100 n = 300

standard concomitant standard concomitant standard concomitant

Inaccurate param. ratio  0.7850  0.2700  0.8200  0.1400 0.9250 0.0600

 0.2316  0.0703  0.1925  0.0456 0.1742 0.0392

MSEPAR( )  0.0066  0.0018  0.0062  0.0005 0.0047 0.0002           

MSEPAR( )  0.0098  0.0046  0.0054  0.0010 0.0036 0.0002         

MSEPAR( )  0.0254  0.0023  0.0187  0.0003 0.0154  <0.0001   

Source: Own construction

MSEPAR β10 β11 σ1
2 β20 β21 σ2

2 β30 β31 σ3
2

n = 50
standard 35.7349 0.0388 42.2389 268.0571 0.3215 90.3459 277.8042 0.0527 33.0111

concomitant    21.4600 0.1367 32.7982 154.9637 0.4086 74.5576 365.5693 0.0667 14.7752

n = 100
standard  7.6366 0.0096 6.4402 89.8041 0.1335 34.0492 194.2027 0.0367 12.4032

concomitant 9.1976 0.0515 12.2703 55.8374 0.1272 24.2869 126.9932 0.0241 5.4217

n = 300 
standard  2.3826 0.0029 2.2685 28.5231 0.0348 10.2868 91.1527 0.0178 5.2866

concomitant 1.4447 0.0144 0.9264 21.0425 0.0384 6.3211 32.4438 0.0062 0.9661

VAR β10 β11 σ1
2 β20 β21 σ2

2 β30 β31 σ3
2

n = 50
standard 16.3324 0.0314 0.0742 116.0794 0.1842 0.0329 40.9276 0.0097 0.0512

concomitant    11.8080 0.0927 0.0425 103.0376 0.2121 0.0262 164.2889 0.0319 0.0497

n = 100
standard  6.0410 0.0086 0.0364 53.9657 0.0841 0.0151 26.5701 0.0056 0.0315

concomitant 4.7048 0.0353 0.0235 49.8695 0.0975 0.0117 81.7340 0.0155 0.0260

n = 300   
standard  2.0882 0.0030 0.0115 18.1297 0.0299 0.0047 13.1638 0.0027 0.0125

concomitant 1.3823 0.0108 0.0080 16.6439 0.0314 0.0040 27.1625 0.0050 0.0087

Source: Own construction
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goes for the MSEPAR of mixing proportion estimates (Table 5). However, it should be kept in mind that  
the quality characteristics were calculated from the correctly estimated models and that a standard mixture 
tends to give entirely inaccurate results. Therefore, for this type of regression function configuration,  
a mixture model with a concomitant variable should be only used for the estimation.

CONCLUSION
The paper is focused on a concomitant variable introduced by Grün and Leisch (2008) and its role  
in the mixture of regression models. Two representative simulation studies were performed in order to 
assess the quality of regression estimates and clustering properties of both a standard mixture of regression  
models and a mixture of regression models with concomitant variables. Obviously, the possibilities of 
mixture models setting are various and this paper is focused only on two of them. However, the models  
presented here were chosen as a representative sample, assuming at the same time that each model 
works with different number of components, diverse distributions of predictor, various regression lines  
configuration and, most importantly, distinct characters of the concomitant variable.

The results of both studies indicate that the concomitant variables present a beneficial extension  
of mixture models. In case of a categorical concomitant variable, the results are straightforward and provide  
evidence in favour of a mixture model including a concomitant variable, since for this model, both  
the mean square error and the mean variance of estimates are, with very few exceptions, smaller. These 
characteristics are not so unambiguous for a three component mixture and a covariate as a concomitant 
variable. However, these indicators are only valid for a small portion of estimates that are close enough 
to the true values of parameters. In practice, the ratio of highly inaccurate estimates is more informative 
and is significantly reduced as a concomitant variable is added into the model.

Clustering properties are assessed through the mean misclassification error of each model. Again,  
a concomitant variable enhances estimated component membership in both cases, especially for a small 
sample size. In general, concomitant variables themselves prove to be useful in the mixture of regression 
models. Particularly, the concomitant variable in a form of the predictor itself seems to be a common 
choice for reasonable regression parameters estimates.

As models in the mixture get more complicated, estimates can become less precise and reliable. 
Nevertheless, the conclusions of the simulation study remain similar as the concomitant variables still 
enhance the performance of the mixture of regression models for both categorical and continuous  
concomitant variables.
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