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Abstract

To overcome drawbacks of central moments and comoment matrices usually used to characterize univariate 
and multivariate distributions, respectively, their generalization, termed L-moments, has been proposed. 
L-moments of all orders are defined for any random variable or vector with finite mean. L-moments have been 
widely employed in the past 20 years in statistical inference. The aim of the paper is to present the review of the 
theory of L-moments and to illustrate their application in parameter estimating and hypothesis testing. The 
problem of estimating the three-parameter generalized Pareto distribution’s (GPD) parameters that is generally 
used in modelling extreme events is considered. A small simulation study is performed to show the superio- 
rity of the L-moment method in some cases. Because nowadays L-moments are often employed in estimating 
extreme events by regional approaches, the focus is on the key assumption of index-flood based regional fre-
quency analysis (RFA), that is homogeneity testing. The benefits of the nonparametric L-moment homogeneity 
test are implemented on extreme meteorological events observed in the Czech Republic.2
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IntroductIon
Moments, such as mean, variance, skewness and kurtosis, are traditionally used to describe features of 
a univariate distribution. Hosking (1990) introduced an alternative approach using L-moments, which 
are defined as certain linear combinations of order statistics. The main L-moments‘ advantage, in com-
parison to conventional moments, is their existence of all orders under only a finite mean assumption. 
When describing a multivariate distribution, the situation is very similar. The mean vector and covariance, 
coskewness and cokurtosis matrices with elements the covariance, coskewness and cokurtosis are 
the characteristics usually used to summarize features of a multivariate distribution. However, central 
comoments (covariance, coskewness, cokurtosis, etc.) are defined under finiteness of central moments 
of lower orders. To avoid this drawback, Serfling and Xiao (2007) proposed multivariate L-moments with 
elements the L-comoments as analogues to central comoments, without giving assumptions to finiteness 
of second and higher central moments.

L-moments, being measures of shape of a probability distribution, may be used for summarizing data 
drawn from both univariate and multivariate probability distributions. Besides description statistics, 
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L-moments play an important role also in inferential statistics. In the past 25 years the method of L-mo-
ments has been used as a convenient alternative to the traditional estimation method of moments and 
maximum likelihood method, mainly in hydrology, climatology and meteorology (e.g., Kyselý and Picek, 
2007), but also in economics and socioeconomics (e.g., Bílková, 2014). The L-moments based estimates 
are obtained in a similar way as in the moment method, which means the population L-moments are 
equated to their corresponding sample quantities. Hosking (1990) gives parameter estimators of some 
common univariate distributions and highlights L-moments, because they sometime provide better 
estimates than the maximum likelihood method (particularly for small samples and heavy-tailed distri-
butions). Several other studies have shown that the L-moment method in some cases outperforms also 
other estimation methods, including the well-known method of moments and relatively new methods of 
TL- and LQ-moments when estimating their parameters or high quantiles (Hosking, Wallis and Wood, 
1985; Hosking and Wallis, 1987; Martins and Stedinger, 2000; Delicado and Goria, 2008; Šimková and 
Picek, 2016), as well. Moreover, L-moments based estimates are more tractable than maximum likeli-
hood estimates. Besides parameter estimating, L-moments are also employed in hypothesis testing, 
particularly in RFA which yields reliable estimates of high quantiles of extreme events using data from 
sites, which have similar probability distributions. A univariate approach based on L-moments intro-
duced by Hosking and Wallis (1997) has been routinely used in areas such as hydrology, climatology 
and meteorology, among others (Chen et al., 2006; Kyselý, Picek and Huth, 2006; Kyselý and Picek, 2007; 
Viglione, Laio and Claps, 2007; Noto and La Loggia, 2009; Kyselý, Gaál and Picek, 2011). Attention to 
multivariate RFA has been devoted recently in works of Chebana and Ouarda (2007), and Chebana and 
Ouarda (2009), in which the main steps of univariate index-flood based RFA of Hosking and Wallis 
(1997) were generalized using multivariate L-moments, copulas and quantile curves. Now multiva- 
riate RFA based on L-moments becomes popular in practice, because it improves analysis of the studied 
phenomenon by considering more available information (Chebana et al., 2009; Ben Aissia et al., 2015; 
Requena, Chebana and Mediero, 2016).

The paper gives a brief review of the theory of L-moments and their selected applications and uses 
already known methods to illustrate their use in specific examples in practice. First, the usefulness of 
L-moments is shown in the problem of estimating the GPD parameters often used in modelling extreme  
events. Although various techniques, such as the moments, L-moments or maximum likelihood methods, 
have been proposed in the literature for estimating parameters of a probability distribution, some of them  
are more accurate for data of certain properties as it has been already shown in several comparison studies 
(Hosking, Wallis and Wood, 1985; Hosking and Wallis, 1987; Martins and Stedinger, 2000; Delicado and 
Goria, 2008). Hence, a small simulation study is performed to compare several estimation methods and 
to show the superiority of the method based on L-moments for estimating GPD parameters in some 
cases. However, nowadays L-moments are mainly used in RFA to reliably estimate high quantiles of ex-
treme events. The second illustration uses L-moments in hypothesis testing. Several papers have already 
dealt with both univariate and multivariate RFA based on L-moments of extreme precipitation events in 
the Czech Republic (Kyselý, Picek and Huth, 2006; Kyselý and Picek, 2007; Kyselý, Gaál and Picek, 2011; 
Šimková, Picek and Kyselý, in preparation). All these studies employed for homogeneity checking the 
parametric Hosking and Wallis (1997) or generalized Chebana and Ouarda (2007) L-moment homogeneity  
tests, which preceded model’s parameters estimation and also relatively labouring selection of the best 
copula in the bivariate case. The nonparametric procedure is more powerful and easier to implement 
than the parametric one, because it does not require estimation of model’s parameters nor specification 
of the copula in the multivariate case, and, hence, the homogeneity testing becomes simpler and quicker.  
Here, the benefits of the nonparametric homogeneity testing based on L-moments are implemented 
on bivariate extreme meteorological events observed in the Czech Republic. We will investigate wheth-
er the regions’ homogeneity will be confirmed also by the nonparametric test, but in much easier way. 
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Because  the nonparametric test of Masselot, Chebana and Ouarda (2016) has been introduced very 
recently, this is one of the first attempts of implementing the nonparametric procedure on the real-world 
data.

The paper is organized as follows: In the first section, the theory of both univariate and multivariate 
L-moments and their use in statistical inference are briefly reviewed. The use of L-moments in specific 
tasks, particularly in estimating the GPD parameters and nonparametric checking of regions’ homoge- 
neity formed in the area of the Czech Republic, and results obtained are presented in Section 2. The paper 
closes with summary section.

1 MEtHodoLoGY
1.1 univariate L-moments
1.1.1 Population univariate L-moments
A population L-moment is defined to be a certain linear combination of order statistics (the letter L just 
emphasizes that the L-moment is a linear combination) which exists for any random variable with finite 
mean. Hosking (1990) defined the population L-moment of the rth order as a linear combination of the 
expectations of the order statistics X1:n ≤ X2:n ≤ …≤ Xn:n of a random sample of size n drawn from a uni-
variate distribution of a random variable X with cumulative distribution function F:

                                                                                                             (1)

When comparing L-moments to conventional moments, L-moments have some merits, including 
their existence, uniqueness and robustness (because they are linear combinations). The Formula (1) may 
be rewritten to the form, which is useful particularly for computation of L-moments of a given proba- 
bility distribution,

                                                                                                                   (2)

where: 

                                                                                                                  

is the rth shifted Legendre polynomial and x(F) is quantile function of a variable X. The first L-moment 
is just the mean of a random variable X and the second L-moment is equal to one-half of the Gini’s mean 
difference statistic. Serfling and Xiao (2007) also present the expression of the second and higher order 
L-moments in the covariance representation as:

                                                                         (3)

It is desirable to define dimensionless versions of higher L-moments, termed L-moment ratios, as:

                                                                                      

Analogy of the coefficient of variation may be also defined in terms of L-moments as the ratio of the 
second L-moment λ2 to the first L-moment λ1
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Although L-moments do not exist for distributions which have no finite mean (e.g., this happens for 
a Cauchy distribution, or generalized Pareto and generalized extreme-value distributions for certain values 
of the shape parameter), generalizations of L-moments, termed trimmed L-moments (abbreviated 
TL-moments) and LQ-moments, have been proposed. They always exist. See Elamir and Seheult (2003) 
and Mudholkar and Hutson (1998) for their definitions and properties.

The first two L-moments λ1 and λ2, termed L-location and L-scale, being measures of location and 
scale, and the third and fourth L-moment ratios τ3 and τ4, termed L-skewness and L-kurtosis, being 
measures of skewness and kurtosis, may be used for summarizing a univariate distribution. See Table 
1 for the first four L-moments of some selected common univariate distributions which may be simply 
derived using the Formula (2).

   Table 1  L-moments of several selected univariate distributions
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   Table 2  Parameter estimation of several selected univariate distributions
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1.1.2 Sample univariate L-moments
Because L-moments are defined for a probability distribution, they must be in practice estimated  
from an observed random sample drawn from an unknown probability distribution. The rth sample 
L-moment, being an unbiased estimator of the population L-moment λr, defined Hosking (1990) as 
a linear combination of the order sample x1:n ≤ x2:n ≤ ... ≤ xn:n of size n

                                                                                                                                 

The first sample L-moment termed sample L-location, is equal to the sample mean, while the second 
sample L-moment is called sample L-scale.

Naturally, the L-moment coefficient of variation τ and L-moment ratios τr are estimated by the sample 
L-moment coefficient of variation and sample L-moment ratios given by:

                                                                           (4)

Observed data may be alternatively summarized and described by the sample L-location l1, 
L-scale l2, L-skewness t3 and L-kurtosis t4.

1.1.3 Method of L-moments
Usually, the method of maximum likelihood and method of moments are used for estimation of para- 
meters of a probability distribution. Following the same idea as in the case of method of moments, 
L-moments provide parameter estimates. Let X be a random variable with a probability density function  
f (x; θ1, ..., θk), where θ1, ..., θk are k unknown parameters. The unknown parameters are estimated by 
solving the system of equation which arise from matching the first k population L-moments with cor-
responding sample counterparts, i.e.,

                                                            (5)

Hosking (1990), and Hosking and Wallis (1997) give parameter estimates of selected common univari-
ate probability distributions derived by the L-moment method. Parameter estimates of some univariate 
probability distributions are shown in Table 2.
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1.2 Multivariate L-moments
1.2.1 Population L-comoments
Serfling and Xiao (2007) defined L-comoments, which describe a multivariate distribution only under 
finite mean assumptions, analogously to the forms of central comoments and univariate L-moments in the 
covariance representation given by the Formula (3). Hence, it is worth remembering central comoments. 

Let’s have a bivariate random vector (X1, X2) with cumulative distribution function F, marginal 
distribution functions F1, F2, finite means μ1, μ2 and central moments μk

(   1   ), μk
(   2   ) , k ≥ 2. The rth central 

comoment of variable X1 with respect to variable X2 is defined as:

The second, third and fourth central comoments ξ2[12],ξ3[12],ξ4[12] are covariance, coskewness and 
cokurtosis, respectively. Dimensionless versions of central comoments are given by:

       

The second, third and fourth central rescaled comoments ψ2[12],ψ3[12],ψ4[12], are called correlation, 
coskewness and cokurtosis coefficients, respectively.

Let’s have a bivariate random vector (X1, X2) with cumulative distribution function F, marginal distri-
bution functions F1,F2 and finite means μ1, μ2. The rth L-comoment of variable X1 with respect to variable 
X2 (in this order) is defined as:

                                                             ,

(the version λr[21] is defined similarly). Generally, λr[12] and λr[21] are not equal. Having X1 = X2, L-comoments 
reduce to univariate L-moments. The second to the fourth L-comoments may be regarded as alternatives 
to central comoments ξ2[12],ξ3[12],ξ4[12]. 

Scale-free versions of L-comoments, so-called L-comoment coefficients, are defined in similar way as 
L-moment coefficient of variation and L-moment ratios given by Formula (4):

       

Computation of population L-comoments may be simplified when variables X1, X2 meet certain con-
ditions, particularly when variables are jointly distributed with affinely equivalent marginal distribu-
tions and one variable has linear regression on the other (for a detailed formulation see Proposition 3 
in Serfling and Xiao (2007)).

1.2.2 Estimation of L-comoments
As it is in the case of univariate L-moments, L-comoments must be in practice estimated from 
an observed random sample drawn from an unknown multivariate distribution. This is made in terms 
of concomitants. Consider a sample {(xi

1, xi
2           ), 1 ≤ i ≤ n} drawn from an unknown bivariate distribution. 

When the sample {x1
2, ..., xn

2  }is sorted to a non-decreasing sequence, then the element of the sample 
{x1

1 , ..., xn
1  } which is paired to the rth order statistic x2

r  : n is called the concomitant of x2
r  : n and denoted by 

x12
[  r : n]. The unbiased estimator of the rth L-comoment λr[12] is defined as a linear combination of concomitants:

                                                                   (6)
where:
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1.2.3 Multivariate L-moments as L-comoment matrices
Consider a d-variate random vector X = (X1, ..., Xd). The multivariate L-moment of the first order 
is the vector mean:

         
while the second and higher orders multivariate L-moments are defined in a matrix form with elements 
the rth L-comoments of variables Xi,Xj,1 ≤ i,j ≤ d,

                                 
                         (7)

The second, third and fourth multivariate L-moments Λ2,Λ3,Λ4 are termed L-covariance, L-coskewness 
and L-cokurtosis matrices, respectively. Scale-free versions of L-comoment matrices Λr, r ≥ 2, labelled as 
the L-comoment coefficient matrices Λ*

r  consist of L-comoment coefficients of variables Xi,Xj,1 ≤ i,j ≤ d,

         
The diagonal elements of matrices Λr and Λ*

r  are obviously the univariate L-moments and L-moment 
ratios.

Multivariate L-moments of three selected bivariate distributions are presented in Table 3.
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   Table 3  L-moments of several selected bivariate distributions
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Multivariate L-moments are estimated by considering estimates of L-comoments, defined by For-
mula (6), in the matrix given in Formula (7). In the similar way, the L-comoment coefficient matrices 
are estimated.

1.3 regional frequency analysis
Occurrence of extreme events, e.g., in hydrology, meteorology and climatology, among others, observed 
nowadays in many parts of the world may impact negatively on human society. Therefore, to reduce 
their impact, it is important to best estimate hiqh quantiles of a given return period. Although, in many 
practical applications the number of measurements is not sufficient to reliably estimate high quantiles 
(e.g., when annual maxima are measured), the same variable is often measured in other sites. In theses 
cases, RFA then provides more accurate estimates of high quantile in comparison to local approaches by 
taking into account data from different sites which have probability distributions similar to that site of 
interest. In index-flood based RFA introduced by Dalrymple (1960), a set of sites must meet a homoge-
neity condition, which means that all sites within a region have identical probability distributions apart 
from a site-specific scale factor (regions that meet this condition are termed homogeneous, otherwise 
they are termed heterogeneous). The multivariate quantile Qi (F), 0 < F < 1, at site  is estimated as:

Qi(F) = μiq(F),

where μi corresponds to an estimate of the index-flood scale factor at site  (usually estimated by sample 
mean or median) and q (.) is an estimate of the regional growth curve which is a dimensionless quantile 
function of the probability distribution that is common to all sites in the region.

Generally, RFA consists of two main parts: 1) identification of homogeneous regions, and 2) quan-
tile estimation. Here, the focus is on identification of homogeneous regions, i.e., groups of sites having 
probability distributions identical apart from a site-specific scale factor, because it is a key task in index-
flood based RFA. 

At first, a region must be proposed. Generally, it is recommended to form sites into groups on the basis 
of the site characteristics, such as the geographical location and elevation. They should not be based 
on at-site characteristics, because they are used for homogeneity testing as will be shown later. Several 
procedures have been proposed in the literature to form groups of similar sites, however, cluster analysis 
is the most practical method (Gordon, 1981; Everitt, 1993). When the region has been already proposed, 
it is desirable to decide whether it may be regarded as homogeneous, and, hence, the data from other 
sites may be utilized to obtain accurate estimates of high quantiles. Before executing the homogeneity 
test, the discordancy test should be applied to detect discordant sites.

1.3.1 L-moment discordancy test
The first step in any data analysis is to check that the data are suitable for the analysis. Two kinds 
of errors may occur: 1) data values are incorrect, and 2) the circumstances under which the data 
are ollected change over time. Sample L-moments may be used to reveal these errors. The aim 
of the L-moment discordancy test is to detect sites which are discordant with the group of sites as 
a whole. 

Let’s have a group of N sites, with site i having the record length ni and sample L-comoment coefficient 
matrices Λ2

*  (i),Λ3
*  (i),Λ4

*  (i). The discordancy measure is in the form:

       ),()(
3
1 1 UUSUUD i

T
ii −−= −
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where:

(AT denotes a transposed matrix A). A site i is regarded to be discordant if ||Di|| > 2.6. The sites flagged 
as discordant should be further checked.

1.3.2 L-moment homogeneity testing
First in the literature, the parametric multivariate L-moment homogeneity test was introduced as a genera- 
lization of the univariate Hosking and Wallis (1997) test to the multivariate case. However, this test is para-
metric which means that the multivariate probability distribution common to all sites must be specified. 
Moreover, the threshold for decision about homogeneity comes from simulations. To avoid drawbacks 
of the parametric test above-mentioned, Masselot, Chebana and Ouarda (2016) have introduced three 
alternatives, which differ in generating synthetic homogeneous regions and in the way of decision about 
homogeneity in comparison to the Chebana and Ouarda (2007) procedure. From all three alternatives 
proposed, here, the focus is only on the permutation nonparametric test which has the best performance 
according to the simulation study performed.

Parametric L-moment Homogeneity Test
1) Compute the statistic 

                                                                                               (8)

 where Λ2
*   = (∑N

i  =1 ni Λ2
*  (i))/∑n

i  =1 ni is the regional L-covariance coefficient matrix and || . || an arbitrary 
matrix norm (Chebana and Ouarda (2007) recommend the spectral matrix norm).

2) Generate a large number Nsim of homogeneous regions (500 regions is enough according to Chebana 
and Ouarda, 2007) with N sites, each having the same record length as its real-world counterpart.  
To get a sample with univariate margins use copulas, and to get the desired sample use the quantile 
function of a four-parameter kappa distribution. A copula, being very flexible in modelling 
the dependence structure between variables, is a multivariate distribution function whose 
one-dimensional margins are uniform on the interval (0, 1). Sklar’s theorem (Sklar, 1959) provides 
the relationship between a copula C, joint distribution function H and univariate margins F1, ..., Fd:

 Copula theory has been well developed in the literature, see e.g., Joe (1997) and Nelsen (2006) for 
detailed copula foundations. The regional weighted parameters of the kappa distribution are esti-
mated using the L-moment method proposed by Hosking (1990) by fitting the kappa distribution 
to the regional L-moment ratios (1, tR

2  , tR
3  , tR

4  ), where tR
k  is a weighted mean of the at-site L-moment 

ratios for k = 2,3,4, while the regional copula parameter is obtained as a weighted mean of the 
at-site estimates using the at-site record lengths as weights.

3) Compute the statistic V(j)
|| . || defined by the Formula (8) on each of the simulated homogeneous 

regions, j = 1, ..., Nsim. Standardize V||.|| computed on the observed data in the first step by the mean μ 
and standard deviation σ of the computed values of V(j)

||  . || for a large number of simulated regions, i.e.,
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4) Categorize the region: the region is declared to be homogeneous if H||.|| < 1, acceptably homogeneous 
if 1 ≤ H||.|| < 2, and definitely heterogeneous if H||.|| ≥ 2. Naturally, other measures used by 
Hosking and Wallis (1997) in the univariate L-moment homogeneity testing may be considered 
in the multivariate case to detect heterogeneity.

Nonparametric Permutation L-moment Homogeneity Test
1) Choose a significance level α     (0, 1).
2) Calculate V||.|| defined by the Formula (8) on the observed data as in the first step of the parametric 

test.
3) Generate a large number Nsim of homogeneous regions, which means to reassign randomly the 

pooled data between N sites while preserving the real-world at-site record lengths.
4) Compute the statistic V(j)

|| . || defined by the Formula (8) on each of the simulated regions, 
j = 1, ..., Nsim .

5) Compute the p-value given by:

                                                           .                           (9)

The null hypothesis of homogeneity is rejected if p – value < α.

Although RFA has been traditionally used for analysis of extreme natural phenomena, it may be also 
employed in other fields in which extremes appear. In particular, it seems that modelling and estima-
tion in finance, in which the interest in multivariate heavy-tailed distributions has increased, could be 
improved by using RFA.

2 rESuLtS
In this section, results of specific applications of L-moments in two main fields of statistical inference 
are presented.

2.1 Estimation of GPd parameters 
The choice of an appropriate estimation method of the GPD parameters is solved in this section. The 
three-parametric GPD with parameters ξ (location), σ (scale) and k (shape) has cumulative distribution 
function in the form:

                                                          .

The L-moments estimates are compared to estimates obtained by the moment and maximum likeli-
hood methods. Note that population L-moments of all orders exist for k > –1. Matching the first three 
population L-moments to their sample counterparts and solving the system of equations given in (5), 
L-moments based parameter estimates are obtained:

Analogously, moments based estimates are given by:
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where            are sample mean, variance and skewness, respectively. First, the shape parameter k must 
be estimated by numerically solving the first equation. In the case of the maximum likelihood method, 
the location parameter ξ cannot be obtained, because the likelihood function is not bounded with 
respect to ξ, hence, the minimum value of the sample data is used as its estimate (Singh and Guo, 1995). 
The estimates of σ and k are achieved by solving equations:

According to Šimková and Picek (2016) this study is focused only on values of the shape parameter 
k in the range –0.4 ≤ k ≤0.4 being typical for environmental applications. For each combination 
of the sample size n, n     {20, 50, 100}, and the shape parameter k, k     {–0.4, –0.2, 0, 0.2, 0.4} 1 000 times  
a sample from the GPD is drawn, while the parameters of location and scale are fixed ξ = 0, σ = 1. 
The estimation methods are compared each other according to the sample mean squared error (MSE):
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Table 4   Parameter estimates by moment (MM), L-moment (LM) and maximum likelihood (ML) methods: sample 
mean over 1 000 simulations (first row) and sample MSE (second row)

n = 20 n = 50 n = 100
MM LM ML MM LM ML MM LM ML

ξ
0.661 –0.029 0.053 0.621 –0.014 0.020 0.578 –0.010 0.010
0.894 0.015 0.006 0.607 0.005 0.001 0.444 0.003 0.000

σ
2.288 1.160 1.224 2.064 1.075 1.071 1.927 1.046 1.032
3.456 0.270 0.347 2.091 0.089 0.074 1.320 0.047 0.034

k = –0.4
0.051 –0.255 –0.240 –0.082 –0.334 –0.351 –0.139 –0.360 –0.379
0.231 0.100 0.182 0.112 0.039 0.048 0.075 0.021 0.021

ξ
0.299 –0.015 0.053 0.235 –0.006 0.020 0.189 –0.004 0.010
0.200 0.011 0.006 0.108 0.004 0.001 0.068 0.002 0.000

σ
1.642 1.103 1.213 1.428 1.041 1.0671 1.322 1.021 1.030
0.718 0.206 0.300 0.290 0.068 0.065 0.157 0.035 0.029

k = –0.2
0.121 –0.108 –0.028 –0.008 –0.166 –0.147 –0.062 –0.183 –0.176
0.137 0.086 0.163 0.051 0.031 0.039 0.028 0.016 0.017

ξ
0.121 –0.013 0.051 0.061 –0.004 0.020 0.044 –0.003 0.010
0.065 0.010 0.005 0.032 0.003 0.001 0.019 0.001 0.000

σ
1.357 1.085 1.225 1.175 1.025 1.061 1.114 1.016 1.035
0.307 0.191 0.307 0.095 0.060 0.058 0.045 0.029 0.026

k = 0
0.221 0.059 0.190 0.100 0.014 0.055 0.063 0.008 0.028
0.096 0.087 0.168 0.029 0.027 0.032 0.014 0.013 0.014

ξ
0.037 –0.006 0.051 0.014 –0.002 0.019 0.005 –0.001 0.010
0.033 0.008 0.005 0.015 0.003 0.001 0.009 0.001 0.000

σ
1.187 1.056 1.220 1.076 1.021 1.067 1.039 1.009 1.032
0.165 0.152 0.251 0.054 0.051 0.050 0.027 0.026 0.023

k = 0.2
0.345 0.240 0.416 0.254 0.212 0.269 0.226 0.204 0.234
0.070 0.078 0.157 0.021 0.025 0.028 0.010 0.013 0.011

ξ
0.010 –0.004 0.051 0.003 –0.002 0.019 0.000 –0.001 0.010
0.020 0.007 0.005 0.008 0.002 0.001 0.005 0.001 0.000

σ
1.116 1.051 1.209 1.043 1.020 1.072 1.021 1.009 1.036
0.133 0.142 0.197 0.046 0.049 0.046 0.023 0.025 0.020

k = 0.4
0.500 0.431 0.634 0.434 0.410 0.482 0.415 0.403 0.442
0.070 0.088 0.145 0.022 0.029 0.028 0.011 0.014 0.011

Source: Own construction
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The smallest the MSE the best the estimator is. Computations are executed in the software R (R Core 
Team, 2014).

Table 4 compares performance of the moments, L-moments and maximum likelihood methods 
(the minimum MSE value is highlighted by italics). It can be concluded that the maximum likelihood 
method provides the best estimate of the location parameter, and also of the scale parameter for moderate 
sample sizes n = 50, 100, while the L-moment method outperforms the moment method for small 
sample size n = 20. When estimating the shape parameter, the L-moment based estimator is recom-
mended for heavier tails (k ≤ 0), while the moment method yields estimates with the smallest MSE for 
light tails (k > 0).

2.2  nonparametric homogeneity testing in bivariate rFA of extreme precipitation events
Bivariate parametric homogeneity testing based on L-moments has been already applied to data observed 
at meteorological stations located in the area of the Czech Republic in the study of Šimková, Picek and 
Kyselý (in preparation). They found out that six regions formed in the area may be regarded as homoge-
neous with accordance to bivariate distribution function with components the 1- and 5-day maximum 
annual precipitation totals. Hence, this finding justifies to use data from an entire region for estimating  
quantiles in any target site in region. However, the procedure used required the user interventions: 
a bivariate copula specification, and kappa distribution and copula parameters estimation. Here, the homo- 
geneity of regions is also checked by the nonparametric permutation test proposed recently by Masselot, 
Chebana and Ouarda (2016), which is easy to apply. We want to test the null hypothesis:

H0 Region is homogeneous,
against the alternative:

H1 Region is not homogeneous,
on the 5% significance level.

Maximum annual 1- and 5-day precipitation amounts measured mostly from 1961 to 2007 at 210 
stations covering the area of the Czech Republic are used as the input dataset. The data were provided 

Figure 1  Delineation of stations into six regions

Source: Šimková (accepted)
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by the Czech Hydrometeorological Institute (CHMI), where they underwent basic quality checking.  
Kyselý (2009) also checked thoroughly the data for errors and missing readings. Delineation of the 
stations to regions shown in Figure 1 is that presented first in the study of Šimková (accepted). Basic 
information concerning the datasets for each region is summarized in Table 5. See Šimková (accepted) 
for more description of regions studied.

   Table 5  Information on the input datasets

   Table 6  Homogeneity testing results

Region 1 2 3 4 5a 5b

Number of 
stations 75 79 33 16 4 4

Overall record 
length 3 438 3 633 1 508 719 188 141

Minimal record 
length (years) 33 37 33 36 47 47

Maximal record 
length (years) 47 47 47 47 47 47

Average record 
length (years) 45.8 46.0 45.7 44.9 47 47

Altitude range 
(m a.s.l.) [150, 400] [410, 1 118] [220, 1 490] [255, 572] [315, 440] [398, 778]

Average altitude 
(m a.s.l.) 270.1 550.3 411.1 412.6 361 523.3

Source: Šimková, Picek and Kyselý (in preparation)

Source: Šimková, Picek and Kyselý (in preparation), own construction

The problem of determining discordant sites and their retention in regions have been already dis- 
cussed by Šimková, Picek and Kyselý (in preparation). To estimate p-values given by Formula (9), 
500 synthetic regions were generated by permuting bivariate data between sites, while the values of V||.||  
have been already calculated on real observed data by Šimková, Picek and Kyselý (in preparation). Table 6 
shows the values of V||.||, and compares the results of parametric and nonparametric homogeneity 
testing via the heterogeneity measures and p-values obtained. Values of the heterogeneity measure H||.|| 
are those presented by Šimková, Picek and Kyselý (in preparation). The parametric test gives evidence 
about homogeneity of all regions because H||.|| values are less than 2, while the nonparametric version 
rejects the null hypothesis H0 of homogeneity for region 1 on the 5% significance level.

Region V ||∙|| H ||∙|| p-value

1 0.0603 1.4884 0.006

2 0.0570 1.1316 0.226

3 0.0536 –1.3857 0.994

4 0.0551 0.7111 0.090

5a 0.0181 –1.5305 0.976

5b 0.0278 –0.7635 0.770
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concLuSIon
Alternatives to traditionally used moments and comoments labelled L-moments, which exist under only 
finite mean assumptions, have been introduced in the paper presented. L-moments, being measures of 
shape of a probability distribution, may be used to describe a probability distribution and to summarize 
sample data. Population L-moments of several selected both univariate and bivariate distributions have 
been also presented. The paper also shows selected already established L-moments based techniques and 
implements them in particular tasks of statistical inference.

The problem of estimating GPD parameters has been resolved. In a small comparison simulation 
study, in which three parameters of the GPD were estimated, it has been shown that the method based 
on L-moments outperforms other usually used estimation methods, such as the maximum likelihood 
and moments methods. This happens particularly for heavier tailed distributions and small to moderate 
samples. These results are consistent with those obtained for other probability distributions.

The benefits of the nonparametric test based on L-moments have been applied for regions formed in the 
area of the Czech Republic. The results obtained by the nonparametric test have confirmed those obtained 
by the parametric one (except one region), but in a much shorter time and without estimating parameters 
and selection of a suitable bivariate copula family, which is substantially more advantageous. Although 
RFA has been traditionally used for analysis of natural phenomena, such as floods and precipitation, 
nothing prevents to use it also for example in finance or economics, because extremes also appear there.
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