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Abstract

The subject of the paper is segmented linear, quadratic, and cubic regression based on B-spline basis functions. 
In this article we expose the formulas for the computation of B-splines of order one, two, and three that is need-
ed to construct linear, quadratic, and cubic regression.  We list some interesting properties of these functions.  
For a clearer understanding we give the solutions of a couple of elementary exercises regarding these functions.
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IntroductIon 
The introduction of the paper, that constitutes its first part, is dedicated to the basic notation of B-spline 
functions can be found in detail in the existing literature on splines in general (see e.g. Bézier, 1972; Böh-
mer, 1974; Meloun, Militký, 1994; Spät, 1996). The main content of the paper lies in the aforementioned 
segmented regression, the theoretical background of which is given in Section 2. Here the most import-
ant part is the least squares method that leads to a system of (so-called normal) equations to compute 
the estimates for the parameters of the chosen regression model. 

In Section 3 we describe the so-called polygonal method of value assignment of the parametric vari-
able t (usually time) to experimentally obtained points in 2 or 3. The starting point of this method  
is an oriented graph with vertices given by the experimentally obtained points with the corresponding  
oriented edges.  We associate to the graph vertices, as the value of the parameter t, the length of the 
polygonal trail that has its starting point in the first vertex of the graph and end point in that particu-
lar vertex. The computation of the so-called knots on the axis of the parametric variable that separate  
the set of experimentally obtained points into line segments (groups, sections) is automatically provid-
ed in this method. 

In Section 4 we address the question of the transformation of the parametric variable into a unit-
length interval, the purpose of which is to increase the numerical stability of the equations of the result-
ing regression curves.

In Section 5 we solve two given problems. In Example 5.2 we discuss also the notion of so-called  
optimal regression with respect to the coefficients of determination.
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1 B-SPLInE FunctIonS
There exists a large literature on B-splines, see e.g. (Bézier, 1972), however, let us fix the basic ideas about 
these functions that we will prefer.

By the symbol (t)+ we denote the real-valued function 

A B-spline function BQ,r = BQ,r (t)  is defined for Q ≥ 1 an integer, r an integer, and Q + 2 knots  
Tr–Q–1 < Tr–Q < ... < Tr as a normalized (Q+1)-th divided difference of the function g(T) = [(T – t)+)]Q  
of real variable T. Thus, g(T) is, for a given T, function of the real variable t, which we will denote  
as (T – t)+

Q. Hence,

 (1.1)

The first divided difference of g is defined as

while the second and the third are

etc. Normalization of a divided difference lies in its multiplication with the corresponding denomina-
tor. More on divided differences can be found e.g. in (Schrutka, 1945). For example, for Q = 1 we have

 

 

that is

 for   (1.2)
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 for   (1.3)

everywhere else B1,r(t) takes the value zero.
For the practical computation of B-spline functions we advise to use the recursive de Boor formula, 

see (de Boor, 1972),

 (1.4)

Example 1.1. According to (1.4), there is for  Q = 1

 (1.5)

We shall find the explicit expression of B2,r in 〈Tr–1, Tr〉, 〈Tr–2, Tr–1〉, 〈Tr–3, Tr–2〉.
For t ∈ 〈Tr–1, Tr〉, according to (1.2) there is

while B1,r–1(t) = 0 (because B1,r–1 is non-zero only in (Tr–3, Tr–2)). Therefore, according to (1.5)

 for   (1.6)

For t ∈ 〈Tr–2, Tr–1〉, according to (1.3) there is

     and      

(in (1.2) we replaced r by r – 1). According to (1.5) there is then

 (1.7)

for Tr–2 ≤ t ≤ Tr–1.
For t ∈ 〈Tr–3, Tr–2〉, there is B1,r(t) = 0 and
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(in (1.3) we replaced r by r – 1). Thus, according to (1.5),

 (1.8)

for Tr–3 ≤ t ≤ Tr–2. Everywhere else is B2,r(t) zero.
Example 1.2. For Q = 2, according to (1.4) we have

 

Analogously as in Example 1.1 we find that 

 (1.9)

for Tr–1 ≤ t ≤ Tr,

 (1.10)

for Tr–2 ≤ t ≤ Tr–1,

 (1.11)

for Tr–3 ≤ t ≤ Tr–2, and lastly

 (1.12)

for Tr–4 ≤ t ≤ Tr–3. Everywhere else is B3,r(t) zero.
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For Q ≥ 1 whole and r whole, the functions BQ,r have interesting properties, see for example (Meloun, 
Militký, 1994):
a) They are positive only in the intervals Tr–Q–1 < t < Tr and are zero everywhere else. 
b) They are normalized, i.e. for k ≥ 1

 (1.13)

in 〈T0, Tk+1〉; for a complete definition of B-splines in the sum (1.13) we need to set on every side  
of that interval another Q so-called complementary knots

in the simplest case they merge with T0 and Tk+1, respectively, on the left or right side,  respectively. 
We call T1 < T2 < ... < Tk, where T0 < T1 and Tk < Tk+1, the main knots.

c) In every interval 〈Ts–1,Ts〉, s = 1, 2, … , k + 1, exactly BQ,s, BQ,s+1, … , BQ,s+Q are non-zero, altogether  
Q + 1 in number.

d) BQ,r is in 〈Tr–Q–1, Tr〉 polynomial spline of order Q with knots Tr–Q–1 < Tr–Q < ... < Tr,
i.e., in every closed interval defined by two neighbouring points BQ,r is a polynomial of order Q that 
belongs to the class CQ–1 (Tr–Q–1, Tr).
We show the latter properties on the following examples.
Example 1.3. For Q = 1, k = 2, let us consider main knots T1 = 1, T2 = 3, complementary knots  

T–1 = T0 = – 3,6 = T3 = T4.  According to (1.2), (1.3), we easily verify that 

 (1.14)

For example, B1,3  is positive only in (T3–1–1, T3) = (T1, T3) = (1,6), everywhere else is zero; see a).  
For s = 2, in 〈Ts–1,Ts〉 = 〈T1,T2〉 = 〈1,3〉  only B1,2  and B1,3 non zero; see c).

For example, for t0 =  ∈ 〈T2, T3〉, where 〈T2, T3〉= 〈Ts–1, Ts〉 for s = 3, only B1,3 and B1,4 are non-zero, while
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Hence,

see b). For r = 3, the B-spline B1,3 is in the interval 〈Tr–Q–1,Tr〉 = 〈T1,T3〉 = 〈1,6〉 of class CQ–1 (T1, T3) 
= C0  (T1, T3), i.e., continuous in this interval. For example, for t0 = 3 ∈ 〈1,6〉 we have B1,3 (3–) = 1 =  
B1,3 (3+); see d).

Example 1.4. For Q = 2, k = 3 let us consider main knots T1 = 3, T2 = 6, T3 = 9 together with comple-
mentary knots T–2 = T–1 = T0 = 0 and 12 = T4 = T5 = T6. According to (1.6), (1.7), (1.8), we easily find that 

 (1.15)

For example, for t0 =  ∈ 〈T1,T2〉, where 〈T1,T2〉 = 〈Ts–1,Ts〉 for s = 2, only B2,2, B2,3 and B2,4 are  
non-zero in this interval, and

Thus,
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see b).
For r = 4, in the interval 〈Tr–Q–1, Tr〉 = 〈T1, T4〉 = 〈3, 12〉  the function B2,4 belongs to C1 (T1, T4), i.e.,  

it has a continuous derivative in this interval. E.g., at t0 = 9 ∈ 〈3, 12〉 the left derivative of this function  
is – , while its right derivative is also – ; see d).

Example 1.5. For Q = 3, k = 4, let us consider main knots T1 = 1, T2 = 2, T3 = 3, T4 = 4 together with 
complementary nodes T–3 = T–2 = T–1 = T0 = –1, 6 = T5 = T6 = T7 = T8. As before, we get 

 (1.16)

For capacity reasons, for B3,5, … , B3,8 we do not provide here their expression.

2 SEGMEntEd LInEAr, QuAdrAtIc, And cuBIc rEGrESSIon
Let n ≥ 2 be an integer. In the Euclidean space m (for integer m > 1) let us consider n points  
Pi = (x1

(i), ... , xm
(i)) = xj

(i), i = 1, … , n (to save space, here and in what follows j will represent the numbers 
1,2, … , m) where at least two are different, obtained during a specific experiment. 

Besides these points, xj
(i), j = 1, … , m, are assumed to be real random variables, consider further knots 

T1 < T2 < ... < Tk, k ≥ 1 an integer, and T0 < T1, Tk+1 > Tk complementary knots. As in Section 1, we call 
T1 < T2 < ... < Tk main knots. 

In the interval 〈Tl–1,Tl〉  for l = 1, … , k + 1 where the variable t changes, let us consider and increas-
ing sequence tl1 < tl2 < ... < tl,n(l), n(l) ≥ 1 an integer, while each its member corresponds to one point xj

(w),  
w = 1, … , n(l). It holds that n = ∑l=1 k+1 n(l). The knots form the interval boundaries, in the union of which 
we will consider depending on the number Q = 1, 2, 3 a real function of variable t

 (2.1)
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for real parameters γj
(r) and BQ,r B-splines, r = 1, … , k + Q + 1; see Section 1. For Q = 1 we say that (2.1) 

is a linear spline in the form of B-splines, for Q = 2 quadratic, and for Q = 3 cubic spline in the afore-
mentioned form.

We will assume that the model of the monitored process is additive, that is, for all values of j, l, w  
under consideration, it holds that 

where εj
(lw) are independent and identically distributed random variables with constant variance.  

So the estimates cj
(1), cj

(2), … , cj
(k+Q+1) of the parameters γj

(1), γj
(2), … , γj

(k+Q+1) can be obtained  
by the least squares method:

 (2.2)

Differentiating (2.2) partially with respect to the parameters, for 1 ≤ p ≤ k + Q + 1, we get

 (2.3)

It is known from mathematical analysis that the necessary condition for Uj, as a function of the pa-
rameters, cj

(1), cj
(2), … , cj

(k+Q+1), to attain its minimum is given by the system of equations

This yields through nullification of (2.3) a system of k + Q + 1 linear equations for the estimates  
cj

(1), cj
(2), … , cj

(k+Q+1) of the parameters γj
(1), γj

(2), … , γj
(k+Q+1):

 (2.4)

where M = (mpq)1≤p,q≤k+Q+1 is a (k+Q+1) × (k+Q+1) matrix, Zj = (zpj)1≤p≤k+Q+1 and cj = (cj
(p))1≤p≤k+Q+1 are  

p-dimensional vectors. 
The structure of M and Zj depends on the type of gj (t), see (2.1). If we put, for brevity, Nr = BQ,r then 

after nullification of (2.3) we arrive to the expression of the components of M and Zj:

 (2.5)

 (2.6)
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From (2.5) it follows that M is symmetric. For Q = 1 it is always tridiagonal, five-diagonal for Q = 2, 
and seven-diagonal for Q = 3. Such systems of equations can be solved by a recursive procedure which 
is stable in the sense of error accumulation, see (Makarov, Chlobystov, 1983); the existence of a main 
diagonal for M means according to definition that

After solving the system (2.4), we acquire the sought estimates cj
(1), cj

(2), … , cj
(k+Q+1) of parameters 

γj
(1), γj

(2), … , γj
(k+Q+1) in the linear combination gj (t), t ∈ 〈T0,Tk+1〉, see (2.1). The corresponding regres-

sion spline to these estimates (linear for Q = 1, quadratic for Q = 2, and cubic for Q = 3), for t ∈ 〈T0,Tk+1〉, 
admits the equations

 (2.7)

To summarize (for j = 1, … , m), these equations represent the parametric expression of a curve  
in m = (0; x1, x2, … , xm), which is the output of the regression model of the monitored process; we will 
call it, in short, a regression curve (linear for Q = 1, quadratic for Q = 2, and cubic for Q = 3).

Due to the special structure of the matrix of the (normalized) system of equations (2.4), that is three-di-
agonal for Q = 1, five-diagonal for Q = 2, seven-diagonal for Q = 3, the author of the article decided for 
segmented regression based on B-spline basis functions; such a matrix, the elements of which are all 
zero except for the given diagonals, enables for an easier and faster computation of the sought solution.

Example 2.1. Let us assume that there were values of the following two parameters: temperature and 
air pressure detected during 24 hours, every two hours beginning at 6 am, at a given place. Table 1 states 
the results of this measurement. 

Table 1  Fictitious temperature and pressure measurement over a 24h period that could represent a real-world 
experiment

Time [h] Temperature Pressure

real fictitious [°C] [hPa]

6:00 0 15 800

8:00 1 16 850

10:00 2 17 900

12:00 3 22 1 000

14:00 4 28 1 050

16:00 5 26 1 020

18:00 6 20 950

20:00 7 19 900

22:00 8 18 890

24:00 9 16 840

2:00 10 15 820

4:00 11 13 810

Source: Own construction
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In 2 (hence, j = 1, 2) we have 12 experimentally obtained points, split in four groups (hence, k = 3) 
by three points (we may call them morning, noon, evening and night group):

to which we assign the following (increasing) time values

see Table 1. It is the case of three main knots, their values can be T1 = 3, T2 = 6, T3 = 9, together, for ex-
ample, with additional time moments T0 = 0 and T4 = 12.

For example, for Q = 2, the matrix M of the system (2.4) is a 6 × 6 matrix, note that k + Q + 1 = 3 + 2 + 1 = 6.  
To save space, we neither give its full expression, nor for Z1 and Z2. This computationally intensive work 
was conducted by the computer program TRIO, that the author of this article created for the purposes 
of segmented regression based on B-splines. 

Nevertheless, for demonstration purposes, let us compute the element m56 of M in accord with (2.5). 
There will be

 (2.8)

as all the other terms of the sum vanish, see (1.15). According to (1.15), there are

hence

Let us also compute the component z62 of the vector Z2. According to (2.6), there will be
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 (2.9)

as all the other terms of the sum are zero. Thus,

The parametric equations of the regression curve, compare with (2.7), which were obtained with  
the aid of the computer program TRIO, are the following:

and

For example, to the value t = t23 = 5 corresponds on the regression curve (in the plane (0; x1 x2))  
the point (26.0504,1028.0736), which lies “near” the point (26,1020) of the experiment. Or to t = 8.5 
corresponds on the regression curve the point (16.0088, 849.0836). We can infer that one hour before 
midnight the air temperature was approximately 16°C and the air pressure was approximately 850 hPa.

3 tHE PoLYGonAL MEtHod
By polygonal method we shall call in short the following procedure of assigning values of t, our “operat-
ing” variable (usually time), to the experimentally obtained points. 

Figure 1  B-spline approximation for the temperature and pressure

Source: Own computation
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In 2 let us consider the planar connected oriented graph G
→
 = [A, B

→
] with the set of vertices  

A = {1, 2, … , n}, n ≥ 2, and B
→

 = {(1, 2),(2, 3), … , (n – 1, n)}, the set of (oriented) edges. We could imag-
ine that the planar polygonal trail obtained in this way, with starting point in 1 and end point in n,  
is an idealized route of a car moving by constant speed, which started from point 1 and ended the journey 
at n. Each vertex of the graph G

→
 can be thought of as trial points, the position of which in the map we 

find by measuring its distance (for example in km) from the left and bottom edges of the map. We divide  
the vertices of the graph into k + 1 groups, for k ≥ 1, by n(l) ≥ 1 points xj

(lw) (l = 1, … , k + 1; w = 1, … , n(l); 
j = 1, 2) in such a way that

(this division of the vertices might be caused, e.g., by the difficulty of the corresponding road terrain), 
and we assign to them an (increasing) sequence of values tlw (in km), where tlw indicates the length  
of the accomplished route from the start at 1 to the place at xj

(lw), that can be thought of as a resting place 
during the drive. 

We include the values tl1 < tl2 < … < tl,n(l), for l = 1, … , k + 1, into intervals 〈Tl–1, Tl). We further de-
mand that T0, T1, … , Tk , Tk+1 is an increasing sequence such that Tl–1 ≤ tl1, for l = 1, … , k + 1 (we shall 
call T1, … , Tk main knots, while T0 < T1, Tk+1 > Tk complementary knots for the observed drive; compare 
with Section 2).

It is meaningful to set T0 = 0, further, from Tl ≤ tl+1,1 it follows after substituting for  
Tl = tl,n(l)  + pl ≤ tl+1,1 that pl ≤ tl+1,1 – tl,n(l)  (where  x   denotes the integer part of the real number x). Let 

 (3.1)

and p = P . If p ≥ 1, then we set pl = p, for l = 1, … , k + 1; we shall return to the case when p = 0.
Putting aside the drive route, we may say that the polygonal method presents a certain automatiza-

tion in the assignment of operating-variable values to experimental points, divided by a given proce-
dure into groups, that includes the computation of knots defining the range of assigned values to groups  
(in the aforementioned car drive example the operating variable is the length of the passed track). This 
polygonal method is implemented in the program TRIO and is capable of solving segmented regression 
problems in 2 and 3, as well.

Example 3.1. In 3 let us consider the following points xj
(lw) (l = 1, 2, 3; w = 1, … , n(l), where  

n(1) = 2, n(2) = 3, n(3) = 2) divided into three groups:

Through the polygonal method we assign (increasing) operating-variable values to them (that can 
be, for example, time):
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According to (3.1), there is P = min{0.8325, 0.7939} = 0.7939, hence p = P  = 0.
We will proceed further as follows. We replace the points xj

(lw) considered above by x∼j
(lw) = L ∙ xj

(lw), 
where L > 1 is a sufficiently large number, and through the polygonal method we assign to them (increas-
ing) operating-variable values t∼lw = L ∙ tlw. For example, for L = 10 we obtain now P = min{5.3242, 2.9390} 
= 2.9390, hence p = P  = 2. We get the following knots that will we applied to the desired segmented re-
gression (for which the program TRIO is ready): T

∼
0 = 0, T

∼
1 = 5, T

∼
2 = 57, T

∼
3 = 75, to which in the initial 

situation correspond the knots T0 = 0, Tl = , l = 1, 2, 3, i.e. T0 = 0, Tl = 0.5, T2 = 5.7, T3 = 7.5.
It is worth to note one more remark. It might happen that the computed knot Tk+1 will be too far  

to the right from the length of the entire polygonal trail processed by the computer. The program TRIO 
enables in this case its reduction to the demanded size. 

4 tHE trAnSForMAtIon oF tHE PArAMEtrIc (oPErAtInG) VArIABLE
The elements of M and Zj in the system of equations (2.4) are structured by the fact that we are work-
ing with B-splines. For the improvement of numerical stability of the parametric equations of the re-
gression curve (compare with (2.7)) that is the result of the used regression model, it is recommended  
in the literature to transform the respective parameter into a unit-length interval (if the length of interval for  
the initial parameter is much larger than 1; see for example (Meloun, Militký, 1994)). Let us remind that, 
vaguely speaking, numerical stability of a computational process means “reasonable” or “unreasonable” 
loss of decimals during the computation.

We transform t ∈ 〈T0,Tk+1〉 into

 (4.1)

where 0 ≤ N < M are real numbers and K =  > 0.We can easily see that for any two values t1 < t2 from 
this interval it holds that

 (4.2)

For l = 1, … , k + 1, the interval 〈Tl–1, Tl〉, where t is changing, transforms onto the interval , 
where the variable to change will be t'.

In general, for Q = 1, 2, 3 and integer k ≥ 1, for B-splines N'l+s–1(t') = BQ,l+s–1(t'), where s = 1,…,Q + 1, 
which are non-zero in , it holds that

 (4.3)

Indeed, for example, for Q = 3, k = 2, s = 4, l = 3 we get, according to (1.12) and (4.2), that
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for T'2 ≤ t' ≤ T'3, that is, for T2 ≤ t = f–1 (t') ≤ T3. According to (4.3), the transformation t' = f(t)  
of the interval 〈T1, Tk+1〉 onto 〈N, M〉 does not change the system of normal equations (2.4) (for j = 1, 
… , m, Q = 1, 2, 3 and integer k ≥ 1), it provides, therefore, the same estimates cj

(1), cj
(1) , …, cj

(k+Q+1)  
of the parameters γj

(1), γj
(2), … , γj

(k+Q+1) in the linear combination of B-splines

as in the untransformed case (2.1). The regression spline corresponding to these estimates (linear for  
Q = 1, quadratic for Q = 2, cubic for Q = 3) admits, for t' ∈ 〈T'0 = N, T'k+1 = M〉 the equation

 (4.4)

To summarize, the equations (4.4) represent, for j = 1, … , m, the parametric expression of the same 
regression curve (linear for Q = 1, quadratic for Q = 2, and cubic for Q = 3) as equations (2.7).

5 tWo EXAMPLES
Example 5.1. Let us provide, using a Weibull plot, the failure analysis of lining pads of front disc brakes 
of cars based on real values observed for cars in Federal Republic of Germany (see (VDA3, 1995)).  
The goal is to determine the characteristic lifetime defined as the lifetime until which 63.2121% of mon-
itored units is broken (63.2121 = (1 – e–1) ∙ 100).

The starting point is Table 2. For the mean order number, median order there are in (VDA3, 1995) 
available the corresponding formulas. We display the points (tq km ∙ 1000, Hq%), for q = 1, … , 30, in a 
Weibull plot, divided e.g. into three groups of ten (in accord with previous notations, k = 2, see Section 2):

And we assign to them values of an (operating) variable t through the polygonal method, see Section 3:
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For example, t32 expresses the length of the polygonal trail measured from the initial point 1 = (8.8, 
1.74) to 22 = (32.1, 64.98). In the first group there are, in accord with previous notations, see Section 

Table 2  Lining pads of front disc brakes of cars in Federal Republic of Germany

Order num. q
Increasing 

sequence of tq

(km ∙ 103)

Num. of broken 
parts nf (tq)

Num. of good 
parts ns (tq)

Middle order num.
j(tq)

Median order
r(tq) = Hq (%)

1  8.8 2 5  2.10  1.74

2 10.3 4 5  6.53  6.02

3 10.7 3  9.85  9.24

4 11.8 1  10.96 10.31

5 12.9 2 2  13.23 12.50

6 13.4 2  15.50 14.70

7 14.4 4 1  20.09 19.14

8 15.4 4 1  24.75 23.65

9 15.6 2  27.08 25.90

10 16.4 5  32.91 31.54

11 17.7 2  35.24 33.79

12 19.3 2 2  37.65 36.13

13 21.1 6 1  45.03 43.25

14 21.6 2  47.48 45.63

15 22.4 1 1  48.74 46.85

16 23.9 1 4  50.12 48.18

17 25.3 1  51.50 49.52

18 27.7 1  52.88 50.85

19 29.1 1 1  54.30 52.23

20 29.9 5  61.40 59.09

21 30.4 2 2  64.44 62.03

22 32.1 2  67.49 64.98

23 38.4 2 2  70.81 68.19

24 39.7 3  75.78 73.00

25 40.2 3  80.76 77.82

26 40.6 3  85.74 82.63

27 41.8 2  89.06 85.84

28 45.7 2  92.38 89.05

29 50.0 3 1  98.19 94.67

30 55.7 1 1 101.09 97.48

Source: Czech Society for Quality
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2, n(1) = 10 points, in the second group there are also n(2)=10 points, and the same n(3)=10 holds for  
the number of points in the third group. It holds that ∑l=1 k+1 n(l) =  ∑l=1 3   n(l) = 10 + 10 + 10 = 30 = n  
(the total amount of observed points).

For t we set the following knots (main and complementary, see Section 1): T0 = 0, further  
P = min{2.7460, 3.3567} = 2.7460, according to (3.1), hence p = P  = 2. Therefore, the additional knots are 

It holds that T0 < T1 < T2 < T3 and Tl–1 ≤ tl1, for l = 1, 2, 3 = k + 1.
We choose the transformation of t ∈ 〈T0, Tk+1〉 = 〈T0, T3〉 = 〈0, 115〉 onto the interval 〈KT0, KTk+1〉 =  

〈T'0, T'3〉 = 〈K ∙ 0, K ∙ 115〉 for the factor K = , thus onto the interval 〈0, 1〉. The new knots 
with respect to the new variable t' will then be T'0 = 0, T'1 = 0.29, T'2 = 0.57, T'3 = 1.

The program TRIO is constructed in such a way that it solves the given regression problem for  
a chosen Q ∈ {1, 2, 3}. Thus, for example, Q = 2 it presents the following output for the equations  
of the regression curve 

 (5.1)

 (5.2)

It remains to determine an approximate value of the characteristic lifetime with the help of the ob-
tained equations (5.1), (5.2). According to (5.2), there is G'2(0.592) = 63.0339, G'2(0.595) = 63.3122,  
what in turn means that x2 = 63.2121(%) lies between these two values. In the interval (0.592, 0.595) we 
will search for the solution of the equation

i.e., after the rearrangement, of the quadratic equation

The desired solution, gained e.g. by the Bairstow iteration method, with a precision of four decimals 
is t' = 0.5939, after the substitution of which into (5.1), we get that x1 = 31.8391 (km ∙ 1 000). Therefore, 
the desired characteristic lifetime is T =∙  30 000 km . Figure 2 depicts the obtained solution.
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Example 5.2. The following values, in CZK ∙ 10 000, have been obtained from the Czech Statistical  
Office's table Expenditures of households by level of net money income per person (ZUR0050UU)  
between 2006 and 2014:

Hypothetically, let us assume that the data for the year 2009 are missing in Table 3. For further in-
quiries, however, at least the probable values of x1, x2, x3  are needed for that year. We try to obtain them 
by regression.

In 3 we shall, therefore, consider 8 points divided for example into 4 groups (hence k = 3) by 2 points:

Figure 2  B-spline approximation of Hq, tq and solution for specific life expectancy

Source: Own computation

Table 3  Expenditures of households by level of net money income per person 2006–2014

Year Gross money
expenditure

x1

Net money
expenditure

x2

Consumption
expenditure

x3real fictitious

2006 0 11.5839 10.2462  9.4711

2007 1 12.9480 11.5200 10.1399

2008 2 13.3191 11.8367 10.9177

2009 3 13.5882 12.3118 11.2723

2010 4 13.6671 12.3176 11.3464

2011 5 14.3507 13.1116 11.8728

2012 6 14.1125 12.8124 11.8150

2013 7 14.3533 13.0129 12.1921

2014 8 14.7604 13.1873 12.2578

Source: Czech Statistical Office
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and assign to them (increasing) values of the parametric variable t:

This is a case with 3 main knots, e.g. T1 = 2, T2 = 5, T3 = 7, together with the complementary knots 
T0 = 0, T4 = 8.

For Q = 3 = Q3 (cubic regression), the program TRIO provides the equations of the resulting regres-
sion curve, also the coefficients of determination Ix1

2 = 0.9859, Ix2
2 = 0.9829, Ix3

2 = 0.9894,  according  
to which 98.59% of the observed values x1, 98.29% of the observed values x2, and 98.94% of the ob-
served values x3  can be explained by this regression model. The program tells us also that the matrix M  
of the system of equations (2.4) does not have a dominant main diagonal.

The table of the coefficients of determination is the following:

It can be seen from Table 4 that the coefficients Ix1
2, Ix2

2 are maximal for Q = 3 = Q3, while Ix3
2  

is the highest for Q = 1 = Q1. Having this in mind, one can consider a kind of “optimal” regression curve 
for the given problem with respect to the coefficients of determination, the construction of which we  
in turn describe.

Generally, we shall deal with a given problem in m, m > 1, with observed values xj, (j = 1, … , m) 
by gradual application of segmented regression for Q = 1 = Q1, Q = 2 = Q2, and Q = 3 = Q3.  For a fixed  
j ∈ {1, … , m}, let the coefficients of determination Ixj

2 attain their highest value for Qr, r ∈ {1, 2, 3}  
(the program TRIO chooses r as the lowest possible). If in (2.7) substitute xj, for that fixed j, with  
the equation obtained by the particular method Qr, in the end (for j = 1, … , m) we can comprehend (2.7)  
as the parametric expression of the “optimal” regression curve with respect to the coefficients of determination.

In our case, the equation of the “optimal” regression curve is

Table 4  Coefficients of determination for linear, quadratic, and cubic regression

Regression Ix1
2 Ix2

2 Ix3
2

linear 0.9613 0.9605 0.9930

quadratic 0.9816 0.9746 0.9883

cubic 0.9859 0.9829 0.9894

Source: Own construction
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For t = 3 we get the point (13.4785, 12.0379, 11.1608) on the optimal regression curve from these 
equations that we can use to substitute the hypothetically missing point in Table 3  for the year 2009, see 
Figure 3 also. It can be seen that this point obtained through regression lies “nearby” the actual point 
given in Table 3 for the year 2009.

concLuSIon
Segmented linear, quadratic, cubic regression can be built also on cut-off splines, see (Meloun, Milit-
ký, 1994). We prefer B-splines BQ,r, as the matrix of the system of normal equations is three-diagonal  
(for Q = 1), five-diagonal (for Q = 2), and seven-diagonal (for Q = 3), that is, its structure is much sim-
pler than in the case of cut-off polynomials; such systems can then be solved by fast recursive methods, 
see (Makarov, Chlobystov, 1983). For the solution of particular exercises (see e.g. Examples 5.1 and 5.2) 
the computer program TRIO plays an irreplaceable role that handles every procedure leading to the final 
result, that is, to the equations of the regression curves.
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