INDICATORS OF MATERIAL FLOWS: CONCEPTUAL FRAMEWORK, USE

Socio-economic metabolism

In order for an economic system to function and produce goods and services necessary for meeting human needs, it behaves similarly to a living organism. It absorbs substances from the surrounding environment and transforms them into products, but ultimately all the materials are transformed into some kind of waste and emitted back into the environment. The economic system above all absorbs fossil fuels, other mineral resources, biomass and water on the input side while emits emissions to the air, water and solid wastes on the output side. This flow of materials, which has mostly had one-way direction so far (only 10-15 percent of wastes is recycled globally) (Brown, 2001), is referred to as an industrial or socio-economic metabolism (Baccini and Brunner, 1991; Fischer-Kowalski and Haberl, 1993; Ayres and Simonis, 1994).

The theory of socio-economic metabolism considers socio-economic system to be a sub-system of the environment connected to its surroundings through energy and material flows. These flows burden the environment and along with land use and other biological and social factors they belong to the key source of environmental problems. If the volume of these flows was reduced, a decrease in environmental pressure could be expected (Schmidt-Bleek, 1993; Weizsäcker et al., 1996; Bringezu et al., 2003).

Environmental pressure is already related to the extraction of mineral resources. The crude oil extraction involves leakages both during extraction phase and oil transportation. The negative impacts on the environment take place during the underground and surface extraction of minerals as well (Neužil, 2001). These impacts include air emissions (mostly of CO, CO2, SO2, SO3, CH4, NO, NO2, and PM), disturbance of water regimes and water contamination, land appropriation and contamination, direct disturbance of biotopes, noise, vibrations and changes in landscape. Other pressures are related to pre-processing of minerals – sorting, crushing, rinsing and drying.

Much bigger environmental burden is related to the consumption of mineral resources. It is besides others caused by the fact that while number of mineral resources entering the economic system is limitted, the number of pollutants emitted due to the consumption of minerals has been growing (Spangenberg et al., 1999). Moreover, these pollutants enter the environment by huge number of gateways: each dumping place, each smokestack and each exhaust pipe presents such a gateway. Consumption of mineral resources contribute, for instance, to global climate change, depletion of stratospheric ozone, eutrophication, acidification, radioactive pollution, etc. (Giljum et al., 2005).

The environment is able, to some extent, to neutralize the environmental pressure imposed on it by human society in relation with the consuption of materials. If the rate of use of renewable resources is lower than the rate of their renewal, or wastes are emitted in such volumes, which can be absorbed by the environment, any severe damage to the environment should not take place (Bringezu, 2006). This rate is, however, often exceeded (World Resource Institute, 2005) and there is a problem with non-renewable resources. Their sustainable rate of use is difficult to determine, above all with respect to their maintenance for future generations.

So far, there has been a positive relation between meeting human needs and pressure exerted on the environment. When standards of living went up, this pressure was growing as well, even though it was often shifted abroad in the case of developed countries (import of resources or transfer of "dirty" industries to developing countries). The environment of developed countries was thus cleaned up (Schütz et al., 2004). On the global level, however, the human society recorded an unprecedented growth in annual material and energy inputs and outputs over the 20th century (Adriaanse et al., 1997). As argued above, this was also accompanied with the growh of environmental pressure. Developed countries within their strategies of sustainable development therefore adopted a goal to break the relation between pressure exerted on the environment and economic growth, i.e. to meet human needs and improve the standard of living. This phenomenon is shortly called decoupling (from longer "decoupling of environmental pressure from economic growth") (OECD, 2002).

Economy-wide material flow analysis, meaning and use of material flow indicators

Material flow analysis belongs among the methods, which allow for quantification of socio-economic metabolism and assessment of environmental pressures related to the use of materials. Nowadays, the attention is above all drawn to economy-wide material flow analysis (EW-MFA). EW-MFA was developed during the 1990s by various research institutes and organizations (principally the World Resources Institute, the Wuppertal Institute for Climate, Environment and Energy, the Department of Social Ecology at the

Faculty for Interdisciplinary Studies of the University in Klagenfurt, Japanese National Institute for Environmental Studies, and Eurostat), and then standardized in a methodological guide (Eurostat, 2001).

The Czech Statistical Office focused on compilation of indicators of material input and material consumption. These are the best developed ones from the methodological point of view and are based on available data. Methodology for their compilation is described in the methodological chapter. Below is the summary of their possible uses (OECD, 2008):

Overall physical scale of the economy and total environmental pressure related to use of materials

To study overall physical scale of the economy over time, it is advisable to refer to material flow indicators in absolute terms. These indicators are considered proxies for environmental pressure related to use of materials and energy.

Equity and equal resource sharing

Relating material flow indicators to population allows for a comparison of material use and disposal of pollutants from the viewpoint of equity and equal resource sharing. Generally speaking, all people should have equal rights to consume natural resources and use the environment for assimilation of waste flows (Moldan (ed.), 1993).

Land use intensity

Consumption of materials can be related to the area needed for materials production. This issue has above all been developed for renewable resources and is well-known as a concept of Ecological Footprint (Wackernagel et al., 1996) and Human Appropriation of Net Primary Production (Vitousek et al., 1986). For cities, area for production of consumed materials is always larger than the area of a particular city. This is caused by high population density and low share of bioproductive areas. For countries and regions, the situation may be reverse.

Efficiency of use of materials and decoupling of environmental pressure from economic growth

Relating input and consumption material flow indicators to national account aggregates, such as gross domestic product (GDP), allows for measuring the efficiency by which an economic system transforms used materials into economic output. Such indicators reflect material productivity, i.e. the ratio of GDP over the material flow indicator, or material intensity, i.e. the ratio of the material flow indicator over GDP. These two measures are compatible with the inverse time development.

Assessment of material intensity and productivity is complementary to analysis of decoupling of environmental pressure from economic growth (see text above).

Shifting of environmental pressure between states and world regions

Many industrialized countries have decreased their amounts of domestically extracted and processed materials by importing them from other countries. The shift of pressure related to extraction and processing of these materials has taken place between states and world regions mainly to the detriment of developing countries (Schütz et. al., 2004). To capture these shifts, it is necessary to study physical imports and exports and related flows.

Foreign material dependency and material security

Material flow indicators can be further used for monitoring of foreign material dependency. Economies fulfil their material demands partly from their own territory and partly by importing materials from other countries. The higher the share of imports in domestic material input and domestic material consumption is, the more the economy is susceptible to incidental shortage of particular commodities abroad, increase in their price or to upheaval of other barriers to foreign trade.

Potential for future waste flows

All input material flows, which are going to be accumulated in form of physical stocks, will change into waste flows sooner or later. Knowing the volume of physical stocks in particular cities, regions and states and their durability, one can model waste flows to come. This is useful for planning of capacities for waste treatment within the waste management plans both in short, medium and long-term perspective.

Use of renewable and non-renewable materials

It is acknowledged internationally that the sustainable supply of materials should be based on renewable materials to a certain extent. This refers not only to scarcity of non-renewable materials but also to the fact that use of non-renewable materials is generally linked to comparatively higher negative impact on the environment (EEA, 2006). This issue can be captured by input and consumption material flow indicators by monitoring ratios of renewable materials in particular indicators.

Použitá literatura / References

- 1. Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D., Schütz, H. (1997): Resource flows The material basis of industrial economies. WRI, Washinghton, D.C.
- 2. Ayres, R. U., Simonis, L. (1994): Industrial metabolism: Restructuring for sustainable development. UNU Press, Tokyo.
- 3. Baccini, P., Brunner, P., H. (1991): Metabolism of the anthroposphere. Springer Verlag, Berlin, New York, Tokio.
- 4. Bringezu, S. (2006): Materializing policies for sustainable use and economy-wide management of resources: Biophysical perspectives, socio-economic options and a dual approach for the European Union. Wuppertal Paper No. 160, Wuppertal Institute, Wuppertal.
- 5. Bringezu, S., Schütz, H., Moll, S. (2003): Rationale for and interpretation of economy-wide material flow analysis and derived indicators. Journal of Industrial Ecology 2 (7): 43-64.
- 6. Brown, L. R. et al. (2001): State of the world 2001. Worldwatch Institute, Washington, D.C.
- 7. Czech Statistical Office, yearly national accounts, internet application: http://dw.czso.cz/pls/rocenka/rocenka.indexnu
- 8. EEA (2006): Sustainable use and management of natural resources. European Environment Agency, Copenhagen.
- 9. Eurostat (2001): Economy-wide material flow accounts and derived indicators. A methodological Guide. Eurostat, Luxembourg.
- 10. Fischer-Kowalski, M., Haberl, H. (1993): Metabolism and colonization. Modes of production and the physical exchange between societies and nature. Innovation: The European Journal of Social Sciences 6 (4): 415-442.
- Giljum, S., Hak, T., Hinterberger, F. and Kovanda, J. (2005): Environmental governance in the European Union: strategies and instruments for absolute decoupling. Int. J. Sustainable Development 8 (1/2): 31–46.
- 12. Moldan, B. (ed.) (1993): UN Conference on the environment and development. Documents and commentaries. Management Press, Prague.
- 13. Neužil, M. (2001): Influence of underground mining on the environment. Reporter of EIA VI, 3, s. 5-9.
- 14. OECD (2002): Indicators to measure decoupling of environmental pressures from economic growth. OECD, Paris.
- 15. OECD (2008): The OECD guide: Measuring material flows and resource productivity. OECD, Paris.
- 16. Schmidt-Bleek, F. (1994): Wieviel Umwelt braucht der Mensch? MIPS Das Mass für ökologisches Wirtschaften. Birkhäuser Verlag, Berlin, Basel, Boston.
- 17. Schütz, H., Moll, S., Bringezu, S. (2004): Globalisation and the shifting environmental burden. Material trade flows of the European Union. Wuppertal Papers 134, Wuppertal.
- 18. Spangenberg, J. H., Femia, A., Hinterberger, F., Schütz, H. (1999): Material flow-based indicators in environmental reporting. European Environment Agency, Copenhagen.
- 19. Vitousek, P., M., Ehrlich, P., R., Ehrlich, A., H., and Matson, P., A. (1986): Human appropriation of products of photosynthesis. Bioscience 36: 368-373.
- 20. Wackernagel, M. et. Rees, W. (1996): Our ecological footprint. Reducing human impact on the Earth. Gabriola Island, BC, New Society Publishers.
- 21. Weizsäcker, E.U., Lovins, A.B., Lovins, L.H. (1996): Factor four. Doubling wealth, halving resource use. New report of the Rome Club. Earthscan, London.
- 22. World Resource Institute (2005): Millennium ecosystem assessment. Ecosystems and human wellbeing: Synthesis. Island Press, Washington, D.C.