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INTRODUCTION
Using data drawn from the population concerned via certain form of random sampling, the statistical 

inference makes propositions about this population, about its underlying probability model. Categorical 

variables have a measurement scale consisting of a small set of discrete categories. The discrete probability 

distributions (particularly binomial, multinomial and Poisson ones) have then the key importance for 

statistical inference in categorical data analysis. Given a sufficiently large sample size, the discrete distri-

butions of test statistics converge to normal distribution or chi-square one. It is known, that the sample 

size must be large enough to use the continuous approximations. 

When the assumptions of the asymptotic method cannot be met and the validity of the correspond-

ing large sample theory is doubtful, the results can be unreliable. Sometimes the data file can be small, 

sparse, unbalanced. However, recent work has shown that these approximations may not be optimal even 

in cases of a relatively large sample size. In all such cases procedures based on exact distribution of the 

test statistics should be applied. 

The distribution of discrete test statistics under the independence hypothesis can be obtained by calcu-

lating all its possible values under rearrangements of data. The statistical methodology underlying these 

Alternative Approaches to the 
Analysis of  Multidimensional 
Contingency Tables
Iva Pecáková1 | University of Economics, Prague, Czech Republic

1
  Nám. W. Churchilla 4, 130 67  Prague 3, Czech Republic. E-mail: pecakova@vse.cz.

Abstract

The practical analyses of interactions between categorical variables in various areas (such as public opinion re-

search or marketing research) are often only applications of chi-square tests in two-way contingency tables. How-

ever, in many situations it is impossible to use large-sample approximations to sampling distributions when their 

adequacy can be in doubt. It is known, that these approximations may be very poor when the contingency table 

contains very small expected frequencies. However, recent work has shown that these approximations can be 

very poor when the contingency table contains both small and large expected frequencies. Of course, the rule of 

thumb of a minimum expected frequency is not met either in the case of sparse table. The article deals with alter-

native approaches to the data analysis in such cases. It points out other possibilities and shows that thanks to the 

development of computer technology exact methods previously only difficult usable are available for this purpose.

Keywords

Contingency tables, categorical data analysis, exact inference about associations

JEL code

C39



2011

63

48 (4)

exact tests (also called permutation tests or randomization tests) exists already some time and is included 

into numerous statistical papers, monographs and textbooks. R. A. Fisher is known to be “a father” of 

exact methods for small samples: his well-known example with milk in tea for 2 × 2 contingency tables 

is mentioned in almost every statistical resource in this area. 

Fisher’s exact approach is conditional. To conduct exact inference about an association, or about the 

odds ratio in 2 × 2 table, the conditional distribution of one cell frequency given the sample size and the 

corresponding marginal totals is considered. The use of this conditional approach is still intensively dis-

cussed, particularly when both types of marginal totals in the table are not fixed naturally. However, it 

can be said that Fisher’s approach dominates. In addition, it can be relatively easily expanded for larger 

tables, which is questionable for other proposed methods.

The computational demands of exact methods, especially in larger tables, can be severe, since all the out-

comes that could occur must be enumerated to compute the P-value of an exact test. The actually observed 

data are compared to what might have been observed. Mehta and Patel (1996) present for example, that 

the set of all possible 5 × 6 contingency tables with relatively small marginal frequencies (n = 34) contains 

1.6 billion tables. Thus practical applications of exact methods had to wait for development of computers 

and especially for new, fast and efficient computational algorithms.  

According to Mehta and Patel, the P-value for independence tests in two-way contingency tables can 

be computed quickly only if min (r, c) ≤ 3, r is number of rows and c is number of columns in the table, 

and the sample size is relatively small. In larger tables the computational algorithm can take even many 

hours. In such case any repeated sampling (resampling) method can provide an estimate very close to 

the exact result. 

The resampling methods do not enumerate all possible outcomes, but a random sample of them. The 

estimate of the P-value is usually obtained as a proportion of these replicates that produce a test statis-

tic greater or equal that calculated for the actual data in the number of all replicated samples. Thus the 

P-value estimate is unbiased, the standard error is also available and so the confidence interval can be 

assembled. In the case of large number of replications, the width of this interval can be very small (the 

accuracy from 10 000 random permutations is not more than 0.01). This type of resampling method is 

known as Monte Carlo or approximate permutation test.

1 TWO-DIMENSIONAL CONTINGENCY TABLES
Consider now a data sample of size n; the data are cross-classified into a contingency table with r rows 

and c columns. Most often the hypothesis of interest is whether an association exists between the two 

classifications in the table. To test the hypothesis of independence between two categorical variables, 

Pearson and likelihood-ratio chi-squared tests are well-known. The test statistics: 

χ
2
 = Σ

i
Σ

j  

(nij – mij)
2

, (1)
 mij

and

G
2
 = –2 Σ

i
Σ

j

nij ln   
nij  , i = 1, 2 …, r; j = 1, 2 …, c, (2)

  mij

where nij denotes observed frequencies and mij estimated expected frequencies, mij = ni+n+j  / n, have the 

same limiting null chi-squared distribution with df = (r – 1)(c – 1) and are asymptotically equivalent. The 

adequacy of the chi-squared distribution depends both on the sample size and on the number of cells in 

the table. The condition of a minimum expected count of 1 and no more than 20 % of mij less than 5 is 

commonly used (in the 2 × 2 table, the expected frequencies should exceed 10).
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However, the approximations can be poor in sparse tables, in tables with both small and large expected 

frequencies. Other findings concerning the quality of approximations can be found in many works; they 

are summarized for example in Agresti (2002): first of all, the statistic χ
2
 is preferable than G

2
 in sparser 

tables and in case of smaller n. When the sample size requirements for the chi-square tests are not met, 

Fisher’s exact test is an alternative. 

This test of independence in the 2 × 2 table assumes fixed row and column marginal frequencies. Then 

n11 (for example), which determines all other three cell counts, can be used as a test statistic. It follows the 

hypergeometric distribution and so the exact test P-value can be calculated. This P-value is the sum of hy-

pergeometric probabilities for tables at least as favorable to the null hypothesis as the observed table. To or-

der the tables according to this “favorableness”, different criteria can be used: larger n11, or larger odds ratio  

θ = n11 n22  /  n12 n21, or larger Pearson statistic χ
2
 (different criteria can lead to different P-values). Because of 

distribution discreteness, the test is highly conservative for small samples. Some authors then recommend in-

volving in the test P-value only half probability for the observed table (so called mid-P-value — Agresti, 2002).

Freeman and Halton generalized the Fisher’s test for the r × c contingency table. When the row totals 

ni+, i = 1, 2 …, r, and the column totals n+j, j = 1, 2 …, c, in the table are fixed, the simultaneous distribu-

tion of the set of nij, i = 1, 2 …, r – 1 and j = 1, 2 …, c – 1, is multiple hypergeometric. The test P-value 

includes the probability of tables with the given margins that are at least as favorable to the null hypothesis 

as the observed table. To order the tables, Pearson statistic is usually used; otherwise, when the classifica-

tion variables are ordinal, for example the gamma statistic can be used for this purpose. 

To analyze complicated associations in multidimensional contingency tables, the log-linear model as 

a generalized linear model using the log link function can be also useful. For the two-dimensional r × c 

contingency table, the saturated loglinear model (when mij = nij) has the form:

lnmij = λ + λi
X
 + λj

Y
 + λij

XY
. (3)

Here λ is a cell effect, λi
X 

are row effects, λj
Y 

are column effects and λij
XY 

are association parameters that 

reflect deviations from independence. In the simplest case of the 2 × 2 table, when we consider dummy 

indicators with λ2
X
 = λ2

Y
 = λ12

XY
 = λ21

XY 
= λ22

XY
= 0, then:

λ11
XY

 = lnθ = ln 
n11 n22

  , (4)
 n12 n21

here θ denotes the odds ratio. Thus, the independence hypothesis for model (3) in 2 × 2 contingency ta-

bles can be written as λ11
XY

 = lnθ = 0, or θ = 1, or lnmij = λ + λi
X
 + λj

Y
 (the tested model).

In the r × c table, when we consider dummy indicators again and set:

λr
X
  = λc

Y 
= λ1c

XY
 = λ2c

XY
 = … = λr1

XY 
= λr2

XY
 = …λrc

XY 
= 0, then

λij
XY

 = lnθij = ln 
nij nrc 

  , (5)
 nic nrj

i = 1, 2…, r – 1; j = 1, 2…, c – 1. 

Test of independence states λij
XY 

= lnθij  = 0 for these (r – 1)(c – 1) association parameters.

2 MULTIDIMENSIONAL CONTINGENCY TABLES
The associations between variables in multidimensional contingency tables can be very complicated. The 

influence of other variables on an association can be confounding. The model can be qualified as very 

useful particularly in such situation.
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In the case of three variables, the loglinear model can be written as:

lnmijk = λ + λi
X
 + λj

Y
 + λk

Z
 + λij

XY 
+ λik

XZ 
+ λjk

YZ 
+ λijk

XYZ
, (6)

i = 1, 2…, r; j = 1, 2…, c; k = 1, 2 …, s (s denotes the number of layers — or strata — in the table).

The model includes two-factor parameters λij
XY

, λik
XZ

, λjk
YZ

 to describe the conditional association for 

each pair of variables given the third variable. In the r × c × s table, when we consider dummy indi-

cators, in general there are (r – 1)(c – 1) non-null parameters λij
XY

, (r – 1)(s – 1) non-null parameters 

λik
XZ

, (c – 1)(s – 1) non-null parameters λjk
YZ

 and (r – 1)(c – 1)(s – 1) non-null parameters λijk
XYZ

. It repre-

sents (r – 1)(c – 1) odds ratios (5) at each level of variable Z, (r – 1)(s – 1) odds ratios at each level of 

variable Y and (c – 1)(s – 1) odds ratios at each level of variable X. The three-factor interactions λijk
XYZ

 

then describe how the odds ratio between two variables changes across categories of the third vari-

able. Any model not having the three-factor interaction term has a homogenous association for each 

pair of variables (see Agresti, 1999). 

When the loglinear model includes all lower-order terms composed from variables contained in 

a high-order model term, the model is called hierarchical. For example, the hierarchical model with λij
XY

 

terms includes λi
X
, λj

Y
,the hierarchical model without λijk

XYZ
 includes all two-factor parameters etc. The 

established symbols usually used for hierarchical loglinear models list the highest-order terms for each 

variable. Thus, the model with all the two-factor parameters but without three-factor parameters has 

a symbol (XY, XZ, YZ), the model with three-factor parameters a symbol (XYZ) etc.

The statistic G
2
 written in (2) for a two-dimensional table is a special case of the likelihood-ratio 

statistic called deviance. In general, the deviance compares the maximum of the log likelihood for 

a tested model and the maximum achievable log likelihood for the most general model with the per-

fect fit of cell frequencies — saturated model. Simpler models have larger deviances, more compli-

cated models smaller deviances. As can be shown, the likelihood statistic comparing the two models 

is simply the difference between their deviances. This statistic has also approximately chi-square dis-

tribution with degrees of freedom equal to the difference between the numbers of parameters in the 

two compared models. 

Thus, the tests about conditional associations can be based on the comparison of the loglinear mod-

els without and with relevant parameters. For example, the hypothesis of the conditional independence 

between X and Y can be tested by:

G
2
(XZ, YZ) – G

2
(XY, XZ, YZ), (7)

where G
2
(XZ, YZ) is the deviance of the model without tested parameters (here λij

XY
) and G

2
(XY, XZ, YZ) 

is the deviance of the model with these parameters. The difference between the numbers of parameters, 

(r – 1)(c – 1) in this example, determines the parameter of chi-square distribution of the test statistic. 

According to Agresti (2002), for given n and a number of cells in the contingency table, chi-squared ap-

proximation is better for tests with smaller df. Of course, conditions of chi-square approximation should 

be met. The extension of the loglinear model for more than three classifications is straightforward.

Cochran-Mantel-Haenszel approach is an alternative to the above procedure. The conditional distribu-

tion of a cell frequency given the sample size and the corresponding marginal totals (the hypergeometric 

distribution) is considered in this method.

In the 2 × 2 table, Mantel-Haenszel (MH) statistic, so-called randomization chi-square statistic Q, 

Q = 
(n11 – m11)

2 

,
 
m11 = 

n1+n+1 
 , v11 = 

n1+n2+n+1n+2   , (8)
 v11 n n

2
(n–1)
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has an asymptotic chi-square distribution with one degree of freedom. Then, in a set of s contingency tables  

2 × 2 arising by sorting data by other variable (or by an combination of other variables), the MH statistic QMH,

QMH  = 
Σ

k

n11k – Σ
k

m11k

2

 

,

 

(9)
   Σ

k

v11k

m11k = 
 n1+kn+1k

 

,
 
v11k = 

n1+kn2+kn+1kn+2k 
 , k = 1, 2 …, s,

 nk nk
2
(nk – 1)

has approximately chi-square distribution with one degree of freedom when overall sample sizes are large 

(individual cell counts and table sizes may be relatively small). 

According to Stokes, Davis and Koch (1995), Mantel and Fleiss proposed a criterion to determine 

whether the chi-square approximation is appropriate for the MH statistic (9):

min Σ
k

m11k – Σ
k

Lk ,  Σ
k

Uk – Σ
k

m11k , (10)

                                            

where Lk = max(0, n1+k – n+2k), Uk = min(n+1k, n1+k).  

It should be noted, that W. Cochran proposed a statistic similar to (9), but he used the unconditional 

approach: he treated the rows in the table as independent binomials with corresponding variance. The 

difference of both approaches is small, (nk
3
 in the denominator of v11k). Because of their basic similarity, 

the approach is usually referred to as Cochran-Mantel-Haenszel (CMH) approach. The continuity cor-

rection (–0.5) is sometimes used in the numerator of the CMH statistics (see Stokes, Davis, Koch, 1995).

For a tree-dimensional contingency table, or in the set of s contingency tables r × c, denote as:

nk
T
 = [n11k, n12k, …, n1,c–1,k …, n21k, n22k, …, n2,c–1,k, …, nr–1,c–1,k], k = 1, 2…, s,

the vector of (r – 1)(c – 1) simultaneous frequencies in all s strata, denote as:

 

mk
T
 = [m11k, m12k, …, m1,c–1,k …, m21k, m22k, …, m2,c–1,k, …, mr–1,c–1,k], k = 1, 2…, s,

mijk = ni+kn+jk / n++k, i = 1, 2, ..., r – 1, j = 1, 2, ..., c – 1,  

the vector of corresponding expected frequencies and denote as Ck the covariance matrix with elements: 

C(nijk, ni'j'k) = 
ni+k(δii'n++k – ni' +k)n+jk(δjj'n++k – nj' +k),

 n
2
++k(n++k – 1)

where for i = i'  δii'  = 1, for i ≠ i'  δii'  = 0

 j = j'  δjj'  = 1, for j ≠ j'  δjj'  = 0. 

The MH statistic QMH (YX.Z) can be then written (according to Pecáková, 2011 for example) as:

QMH(YX.Z) = (n – m)
TC–1

(n – m) ,  (11)

n = Σ
k  

nk, m = Σ
k  

mk, C = Σ
k  

Ck .
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The distribution of this statistic is chi-square with df = (r – 1)(c – 1). Sample size requirements are 

yet based on total frequencies, summed across tables, rather than individual cell quantities. However, 

the MH (CMH) test has low power in the case of associations of opposite patterns in various strata. (To 

test these circumstances, Breslow-Day test was developed; if it is insignificant, then MH test can be used 

successfully — see Pecáková, 2002).

Violations of the conditions of approximate methods in the multidimensional table can be very often 

expected, particularly when the number of classifications and also the number of categories of variables 

is large and the sample size disregards this fact. For use of the approximation strategy, the number of 

variables reduction can arise from combining of more classi-fications. For example, instead of two vari-

ables sex and age (with categories younger — older) we can use only one variable with four categories: 

younger male, younger female, older male, older female. 

This is also the way how to test some parameters of loglinear models for multidimensional tables. 

Some methods of their exact testing are actually special cases of one’s developed for a two-way table. The 

comparison of two hierarchical loglinear models, (X, YZ) and (XYZ) for example, actually represents 

a test of independence for a two-way r × cs table; the model (X, Y, Z) against (X, YZ) can be used to test 

the independence of Y and Z in the two-way table, etc. However, the exact algorithms are not still avail-

able for some types of loglinear models parameters, or there is not available their computational form 

for the use of Monte Carlo method.

3 ANALYSES
3.1  Analysis 12 
At first, consider data from Pecáková (2011) in the Table 1. Here X represents the variable Age (three 

age groups: until 35 years, 36–50 years, above 50 years), Y is the variable Sex and Z represents the vari-

able Willingness (a willingness to switch to a new soft drink brand with categories: yes, no). The sample 

size n is 230.

Two-way analysis:

Willingness is associated with Age. The P-values of both chi-square tests are 0.000. However, Willingness 

is not associated with Sex. The P-values are 0.178. The expected values in the table are quite large, the 

chi-squared approximations are possible. For comparison, the P-value of the exact test is 0.187.

As we can see in the Table 1, some cell frequencies in the subtables acquired according to the levels of 

the variable Age are small. The conditions of chi-squared approximations are not met everywhere. The 

exact P-values of Fisher’s test of association between Willingness and Sex in different age groups are con-

secutively 0.038, 0.043 and 0.042. Thus, the variables Willingness and Sex are associated in the subtables. 

Thus, the results of both analyses are in conflict. Is the influence of the variable Age confounding?

Table 1 Willingness to switch to a new soft drink brand

Age Bellow 35 36–50 Above 50

Sex Female Male Female Male Female Male Total

Yes 45 28 3 24 3 21 124

No 25 5 14 25 14 23 106

Total 70 33 17 49 17 44 230

Source: Pecáková (2011)

2
  All the calculations were accomplished by using SPSS 18.0 and SAS Enterprise Guide 4.1; α = 0.05.
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Three-way analysis: 

The difference between the deviances for the loglinear models without and with the association param-

eter is 15.314 (P-value = 0.000) and the association of the variables Willingness and Sex is confirmed.

MH statistic on the value of 12.856 (or CMH statistic on the value of 14.158) exposes the association 

of Willingness and Sex (the P-value the test is 0.000). The procedure is suitable; Breslow-Day test of odd 

ratio homogeneity is insignificant.

3.2 Analysis 2
Now consider data in the Table 2. The variables are the same like in the Table 1. The sample size is small, n = 72.

Two-way analysis:

The table is sparse. The Willingness is not associated with Age (the P-values of the chi-square tests are 

about 0.830) and it is not associated with Sex again (the P-values of the chi-square test are about 0.195; 

the chi-squared approximations are possible, but the asymptotic tests are somewhat liberal: the P-value 

of the exact test is 0.234).  

In all the subtables, only the exact test can be used. The exact P-values of Fisher’s test of association 

between Willingness and Sex in different age groups are consecutively 0.105, 0.041 and 0.046. The sam-

ple sizes are quite small, so the exact tests are somewhat conservative now.

Three-way analysis: 

The test of the three-factor interaction in the loglinear model is significant P-value 0.003): the odds ra-

tio between two variables changes across categories of the third variable. However, further increase in 

deviance in the test of association between Willingness and Sex is not significant (however, chi-square 

approximation can be doubtful in this analysis). 

The previous result is evident from the MH approach again: the MH statistic of 1.255 (or CMH sta-

tistic 1.962) is not significant in this case. According to the criterion (10), the chi-square approximation 

is appropriate for this test:

Σ
k

Lk = 2 + 0 + 0 = 2,

Σ
k

Uk = 11 + 9 + 5 = 25,

Σ
k

m11k = 6.9 + 4.7 + 2.2 = 13.8,

min{[13.8 – 2], [25 – 13.8]} > 5.

However, the power of the test is small because of result of Breslow-Day test (P-value is 0.003).

Table 2 Willingness to switch to a new soft drink brand

Age Bellow 35 36–50 Above 50

Sex Female Male Female Male Female Male Total

Yes 9 2 2 11 0 10 34

No 6 7 7 5 5 8 38

Total 15 9 9 16 5 18 72

Source: Own construction
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3.3 Analysis 3
The data file

3
 comes from a survey sampling of the interest in getting work in the EU. The file was used 

in Pecáková (2010). We examine associations between the variable Interest (the interest in getting work 

in EU) with values:

1 = “yes, will definitely or probably try”, 

2 = “would be interested if offered a job”,

3 = “no, probably or definitely will not be interested”, 

the variable Income (the ordinal variable with seven income groups) and the variable Age (four age 

groups). The sample size is 1 203, but there are missing values in the sample. The disposable sample size 

for examined three variables is 862.

Two-way analysis:

In the 3 × 7 table for the variables Interest and Income there are no cells with expected frequencies less 

than 5. The variables Interest and Income are nearly associated; the P-values of the asymptotic tests are 

about 0.06.

The subtables in the classification according to the age groups are very sparse. To calculate the exact 

tests, Monte Carlo method with 10 000 samples was applied. The results of the exact tests are 0.251, 0.763, 

0.047 and 0.752. Only in the third group are variables associated, the results of both analyses disagree, 

the marginal association might be only apparent.

Three-way analysis:

The test of the three-factor interaction in the loglinear model is not significant again; the P-value is 0.125; 

the chi-square approximation can be doubtful in this analysis again. 

CMH statistic on the value of 17 851 is not significant (P-value = 0.120). However, it should be noted 

that marginal frequencies are not all sufficiently large and the chi-square approximation might be in 

question. The sample size is not very large for the tests in multidimensional classification.

CONCLUSION 
Sorting data by multiple categorical variables almost always causes a problem of vacant and few occu-

pied fields in the table. In such a case, the conditions for the use of approximate methods are not met. It 

is necessary to take into account this fact when considering the sample size.

Small, sparse or unbalanced data sets limit the usability of tests on the loglinear model parameters in 

the analysis of multidimensional contingency tables. The use of MH (CMH) strategy is potential. The 

distribution of MH (or CMH) statistic depends on marginal frequencies, not on cell frequencies in single 

sub-tables; the sub-tables can be relatively sparse. 

The exact procedures should be used in the case of violation of the conditions of approximate meth-

ods. Computers and statistical software have recently enabled the use of some exact procedures to ana-

lyze multidimensional tables (SPSS or SAS for example). Some methods of exact testing of loglinear 

models parameters are actually special cases of one’s developed for a two-way table. However, the exact 

algorithms are not still available for some types of loglinear models parameters. In addition, the exact 

methods are computationally very demanding and standard statistical software may fail. The solution 

may involve the use a resampling algorithm, such as Monte Carlo.

3
 The data provided the Czech Public Opinion Research Centre (CVVM) in 2006 for a students’ school-leaving work.
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