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METHODOLOGIES

INTRODUCTION

Regression analysis, along with variance analysis, 

belongs to such mathematic-statistical methods, 

which can find a broadest usage in practical appli-

cations of various sciences. The main goal of regres-

sion analysis is finding of a real function f, which 

describes the relation of the dependent variable Y 

and a group of independent variables X1, X2, …, Xm. 

This function is called the regression function and 

shall comply with the relation as follows:

 Y = f (X1, X2, …, Xm) + ε, 

where ε is the random variable representing ran-

dom deviations (errors) of the model.

Let us further limit to the linear class of func-

tions, that is to deal with the model as follows:

Y = β1 +  β2  X2 + … + βm  Xm + ε .

Parameters βi are called linear regression coeffi-

cients and this paper is devoted to their estimators. 

It is known that estimators of regression coef-

ficients by means of the classical method of least 

squares are very sensitive to extreme points that 

means to the points, which are “standing out of 

the line” in a certain way. In practice, such data “is 

created” most frequently by an error when data is 

entered into the computer, or by potentially erratic 

filling in of the original source data. Therefore, it 

is of great importance to identify such points and 

eliminate them from the dataset because their 

presence – and there may be the only one such 

point – would substantially distort or even com-

pletely deteriorate the resulting values of regres-

sion analysis parameters. Such values are referred 

to as influential points (observances) and for the 

sake of simplicity are classified as:

 

occurring at the dependent variable, see Fig-

at the independent variables, see Figure 2.
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1  GENERIC MODEL OF LINEAR REGRESSION

Let us take the classical model of linear regression:

 

 

,   i=1,…. , n ,   n > m, (1)

where xij are given values of ith repetition of jth ex-

planatory (independent) variable, εi are independ-

ent, random variables of normal distribution with 

zero mean value and variance σ2 (so-called “white 

noise”), βj means unknown regression coefficients, 

and yi is a value of the regressand (or the depend-

ent variable) at ith observation.

The matrix record is in the form 

Y = Xβ + ε (2)  

where X = (xij) is a matrix of order nxm and  

ε = (ε1, …, εn)´, β = (β1, …, βm)´, and Y = (y1, …, yn)´ 

are column vectors.

Therefore, Y is a random vector, which has nor-

mal distribution with the mean value (vector) of Xβ 

and the variance-covariance matrix σ2. In, where In 

is a unit matrix of order n.

The basic goal of regression analysis is to estimate 

the vector β by minimising the sum of squares of ob-

served points deviations from the regression line. In 

mathematic language it is finding of the minimum 

of the quadratic form of S(β) = (Y − Xβ)´(Y − Xβ).

Therefore we seek:

 

min (Y − Xβ)´(Y − Xβ). (3)

Let us say β̂ is any solution of a linear equa-

tions system: 

 

X´X β = X´Y.  (4)

The system of (so-called normal) equations (4), 

which is yielded when solving the task (3) has al-

ways one solution, at least, because L(X) = L(X´X). 

Here L(X) refers to the linear envelope formed of 

columns of the matrix X – see [7], for instance. 

In general, the linear envelope of a finite set of 

elements (vectors) of a vector space is defined as 

a set of all linear combinations of these vectors.

It holds: 

(Y − Xβ)´(Y − Xβ) ≥ (Y − Xβ̂)´(Y − Xβ̂)

In other words the quadratic form S(β) takes its 

minimum in the point β = β̂. 

Here S(β̂) represents the residual sum of squares 

of deviations observed from fitted values. 

It is easy to show that the following relations 

are valid:

 

S(β̂) = Y´Y – Y´Xβ̂  (5)  

 

E(S(β̂)) = (n − h(X)).σ2 and  (6)
D(Y − Xβ̂) = D(Y) − D(Xβ̂)

The quantity S(β̂)/(n − h(X)) is therefore an un-

biased estimator of the parameter σ 2. The symbol 

of h(X) means the rank of the matrix X, E(X) is 

a mean value of the random variable X, and D(Y) is 

a variance-covariance matrix of the vector Y. Proof 

can be found in the publication [7] as well. Rather 

detailed publications dealing with matrix algebra are 

[6] and [7]. The next section mostly deals with the 

case m = 2 – that is the most frequently occurring 

issue of simple linear regression in practice.

2  IDENTIFICATION OF EXTREME POINTS

There are numerous methods, which can identify 

extreme points. Procedures given here are good 

to interpret and appropriate characteristics can 

be easily calculated within the environment of the 

spreadsheet software Excel – therefore they do not 

require any special statistical software. In author’s 

experience they are highly effective and sensitive 

in discovering extreme points of input datasets.

2.1  Identification of leverage points 

Let us assume hereinafter that the model (1) is a full 

rank model, that is h(X) = m is valid.

In this case the solution of the system (4) is de-

termined unambiguously and has the form:

 

β̂ = (X´X)−1X´Y.  (7)

It holds that E β̂ = β, and so the estimator is un-

biased and has the least variance among such es-
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timators. In such case we can call it the best linear 

unbiased estimator of the vector β. 

Now, let us mark Ŷ = X β̂  the “predicted” vector 

Y. If β̂ in the equation is replaced with the expres-

sion (7) the yield is:

 

X β̂ = X(X´X)−1X´Y = WY ,  (8)
W = X(X´X)−1X´

The matrix W is a square matrix of rank n hav-

ing properties as follows:

(i) W´ = W (symmetry)

(ii) W2 = W  (idempotency)

(iii) W´X = X

(iv) W is a hat matrix to L(X)

(v) 0 ≤ wii ≤ 1, i = 1, …, n

(vi) 
 
= m

(vii) Let us mark Ŷ = (ŷ1, ..., ŷn) a

 ê = Y − Ŷ = (ê1, …, ên) 

 – the vector of residuals. Then

 var (ŷi) = wiiσ2 and var (êi) = (1 − wii)σ2

(viii)
 

  

.

(ix)  Diagonal elements of wii of the hat matrix 

W represent – roughly – the distance of 

ith observation from the middle of other 

points concerning explanatory variables.

(x)  Such point xi can be considered an ex-

treme point, for which:

 

wii > , i = 1, …,  n. (9)

The procedure as follows can be used to explain 

this boundary. Let us assume that row vectors of 

the matrix X form multivariate normal distribu-

tion. Then, testing the hypothesis that all rows 

have the mean value constant, the testing statistics

  

has Fischer’s distribution 

with m − 1 and n − m degrees of freedom. If criti-

cal value of this statistics is roughly equal to 2, then  

F > 2 (which is the critical region to reject the hy-

pothesis) when the relation (9) is approximately 

valid. Details can be found in [8] or [9].

2.2  Identification of extreme values – outliers 

First, let us introduce the term of so-called trimmed 

mean α (0 < α < 0.25). This is an arithmetic aver-

age, which remains after 100*α % of the smallest 

and largest values are eliminated.

That means more precisely: 

let us mark y(1) ≤ y(2) ≤ ….. ≤ y(n) ordered origi-

nal values of the dependent variable, n1 = {α*n},  

n2 = n − n1, (symbol {x} means the nearest natural 

number higher or equal to x). Thus in total n1 of 

the least and largest values are eliminated and the 

sample then contains k = n2 − n1 values. Then let 

us define α – the trimmed mean and α – trimmed 

variance as follows:

 

 =  

 
 
   

(10)

 

 =  . (11)

In practice it is selected to be 0.05 ≤ α ≤ 0.1, ie. 

ca 10% – 20% of sample values are eliminated and 

the aforementioned characteristics of the mean 

value and variance are calculated using the rest of 

the sample values. 

Further procedure is based on the modifica-

tion to the known three sigma rule, which holds 

for normal distribution. Let us choose the confi-

dence interval
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and detect such points yi, lying outside this interval, 

i.e. such yi, which meet | yi − –yα| > 3σα, i=1, …, n.

This way identified points can be considered 

extreme ones. These values need to be subject 

to further assessment. Verification, if these are 

erratic data (which is quite common case in da-

ta entering), or these are really extreme values, 

has to be carried out. In the first case the points 

are corrected, of course, in the second case such 

values may be either eliminated from the data-

set and then to calculate the vector β estimator 

we can chose some other method. This provides 

a certain guarantee that the dataset got cleaned 

of “suspicious values”.

2.3  Identification of influential points

Ali S Hadi (1992) proposed the following (addi-

tive) statistics, which tests influential points in the 

model of linear regression as follows:

 

 

, where

 (12)

 

is so-called normalized residual. i = 1, 2, …, n.

The first summand in (12) represents a portion 

of influence of the explanatory variable, the second 

addend then represents influence of the dependent 

variable. The test therefore consists in the fact an 

influential point is either of E or V type, respec-

tively. High values of Hi prove that ith observance 

represents an influential point while there is no ex-

act limit determined in this case. Recommendation 

is to set preliminary critical value to 1.

3  DATA SIMULATIONS –  

ILLUSTRATIVE EXAMPLES

For the purpose of quality verification of the afore-

mentioned methods a simulation experiment was 

carried out by means of a random number genera-

tor for the model of simple linear regression with 

parameters as follows:

n = 30 (sample size), m = 2 (number of param-

eters), β = (3,7)´, σ2 = 4 

Therefore the model (1) has the shape:

 

yi = 3xi + 7 + εi ,  i = 1, …, 30. (13)

The explanatory variable xi was generated from 

uniform distribution R(20, 30) and εi has normal 

distribution with zero mean value and standard 

deviation 2.

The estimates of the regression coefficient pa-

rameter β and standard deviation σ of the model 

(13) obtained by the method of least squares were   
β̂ = (3.017; 6.769)´ and σ̂ = 2.6.

Data (13) was subsequently “contaminated” 

with influential values of E and V types this way:

V: x1´ = 40 and x3´ = 4 (original values were  

x1 = 23.2 and x3 = 26).

Diagonal elements of the matrix W are used for 

wii > 
 
,

then such a point may be considered extreme value. 

In our case this critical value is 0.13, while w11 = 

0.31 and w33 = 0.51, and for the other wii < 0.07, so 

x1´ , x3´ can be considered extreme values.

In the calculation of the hat matrix W in the 

Excel environment functions are used as follows: 

Table 1  Generated data (13)

I yi xi i yi xi

1 77.03 23.20 16 81.18 25.03

2 92.16 28.48 17 74.86 22.85

3 86.23 26.00 18 74.17 22.29

4 84.13 25.26 19 82.46 24.15

5 78.98 22.86 20 95.61 29.21

6 89.43 27.20 21 70.16 22.33

7 84.13 26.34 22 70.41 20.83

8 71.25 21.41 23 75.99 23.28

9 70.44 21.58 24 83.18 25.22

10 89.07 26.78 25 67.65 20.35

11 78.88 24.29 26 89.90 28.08

12 71.55 21.17 27 77.91 23.84

13 88.01 25.98 28 69.66 20.45

14 75.70 22.52 29 77.06 24.11

15 90.54 27.71 30 95.50 29.63

Source: own research
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 TRANSPOSITION (A) – carries out transposi-

tion of the given matrix A´

 MATRIX.PRODUCT(A; B) – result is a product 

 INVERSION (A) – calculates the inversion ma-

trix A−1 (if there is any).

The inversion matrix calculation is of sufficient 

-

tions (especially for matrixes of higher orders, for 

instance with n > 50).

Further two values were replaced with extreme 

points this way:

E: y1´ = 50 and y2´ = 140

(original values were y1 = 77.02 and y2 = 92.2).

Subsequently, α – trimmed mean 

and variance for α = 0.05 were calculated:

n1 = {30*0.05} = 2,

n2 = 30 − 2 = 28,

k = 26,

y–α = 80.03,  = 7.39 . 

There were 4 points eliminated and the confi-

dence interval was calculated in the form:

 

(57.8; 102.2)  (14)

There are solely points y1´ and y2´ out of the in-

terval (14) (see Figure 3 below).

What can also be seen in Figures 2 and 3 is the 

presence of outliers lead to significantly worse re-

sults than the presence of leverage points. Both the 

methods described can be employed for the detection 

of extreme (erratic) values for one-sample datasets.

In order to verify the Hadi measure the original 

dataset was “contaminated” with extreme values 

of E and V types simultaneously: x1´ = 40 and  

x3´ = 4 and y1´ = 50 and y2´ = 140 (the way the 

first three pairs of the original values were replaced 

(13)). It is clear in Figure below how this modi-

fication deteriorated “proper” parameters of the 

regression function.

Table 2  Values of diagonal elements  

of the hat matrix W

I wii i wii

1 0.321 16 0.034

2 0.054 17 0.036

3 0.508 18 0.038

4 0.035 19 0.033

5 0.036 20 0.062

6 0.044 21 0.038

7 0.038 22 0.047

8 0.043 23 0.034

9 0.042 24 0.034

10 0.041 25 0.051

11 0.033 26 0.050

12 0.044 27 0.034

13 0.037 28 0.050

14 0.037 29 0.033

15 0.047 30 0.067

Source: own research

Figure 1  Linear regression of a dataset (13)
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Figure 2  Linear regression of a dataset containing two extreme points
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Figure 4  Linear regression of a dataset containing three influential points 
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Figure 3  Linear regression of a dataset including two influential points 
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It can be seen from Table 3 that the Hadi meas-

ure attains the highest value for H3 and H1, and 

further then for H2, which indicates the presence 

of influential points. Other Hi are by an order of 

magnitude lower. 

4  ROBUST METHODS

Methods, which reduce sensitivity to extreme val-

ues and simultaneously give high quality regression 

coefficient estimators, are called robust methods. 

A whole number of such methods were proposed 

due to fast progress in computer technology. These 

methods are theoretically described in a very de-

tailed manner in the today already classical mono-

graph [2], and newly can also be found in [5].

The most often applied procedure in the esti-

mating of regression coefficients is M-estimators 

(maximum likelihood). It is such an estimator of β̂, 

which minimises the sum of residuals using a suit-

able way chosen function ρ, which is convex, and 

there is a derivation ρ´. That means it is a certain 

generalisation of the method of least squares where 

Source: own research

Source: own research

Source: own research
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Table 3

The Hadi measure values

I Hi i Hi

1 2.837 16 0.035

2 0.314 17 0.038

3 4.072 18 0.041

4 0.036 19 0.037

5 0.042 20 0.067

6 0.046 21 0.039

7 0.041 22 0.053

8 0.047 23 0.036

9 0.044 24 0.036

10 0.043 25 0.057

11 0.035 26 0.054

12 0.050 27 0.035

13 0.039 28 0.058

14 0.040 29 0.035

15 0.050 30 0.074

Source: own research
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ρ(x) = x2. The M-estimator therefore depends on 

the selection of the function ρ. Its drawback is the 

M-estimator eliminates solely effects of outliers and 

not those of leverage points. 

Other applied estimator is the LTS-estimator 

(least trimmed squares estimator). This estimator 

is calculated by omitting a certain number of the 

smallest and largest residuals (similar way as in 3.2).

The LMS-estimators or LMedS-estimators (least 

median of squares estimators) are based on the 

idea of minimising the median of squared residu-

als. Generalisation of LMS and LTS estimators give 

birth to the S-estimator.

Statistical software SAS ver. 9.2 has, in its routine 

ROBUSTREG, four methods of estimators, includ-

ing testing for the presence of outliers and leverage 

points: M-, LTS-, S-, and MM-estimators. Yet the 

identification of outliers is based on other methods 

than those mentioned here above. 

CONCLUSION

In real applications one can often face the issue of 

identification and detection of extreme (and/or lev-

erage) points, which are such points that in principal 

manner affect the dataset analysis. Such points are 

classified as outliers of values of the dependent vari-

able, leverage points of the independent variable, or 

influential points of both the variables. It is right the 

presence of such points that results in often com-

pletely worthless regression parameters estimators 

using the method of least squares. Therefore the type 

of the analysed data contamination must be identified 

first. Three methods were chosen out of a number 

of existing methods as follows: detection by means 

of a projection matrix, “robust” confidence interval, 

and the Hadi measure. In author’s experience these 

methods have worked very well in practice, namely 

in accuracy checking of PC entered data.

Some of the methods of the regression coefficient 

calculation by means of so-called robust methods 

are briefly described in section 5. These methods 

are implemented in the SAS system.

Remark: All necessary numeric calculations were carried 

out in the spreadsheet software EXCEL.




