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Abstract

Dealing with missing data is a crucial part of everyday data analysis. The IMIC algorithm is a missing data imputation 
method that can handle mixed numerical and categorical datasets. However, the categorical data are crucial for 
this work. This paper proposes the new improvement of the IMIC algorithm. The two proposed modifications 
consider the number of categories in each categorical variable. Based on this information, the factor, which modifies  
the original measure, is computed. The factor equation is inspired by the Eskin similarity measure that is known 
in the hierarchical clustering of categorical data. The results show that as the missing value ratio in the dataset 
grows, better results are achieved using the second modification. The paper also shortly analyzes the advantages 
and disadvantages of using the IMIC algorithm.

INTRODUCTION
The missing value imputation problem can be frequently encountered in natural and social sciences 
and technology. NASA uses missing value imputation when reconstructing images sent from outer 
space because it is not technologically possible to transfer every image pixel without information loss.  
On the other hand, social scientists may use this method in a survey to compensate for the reluctance of 
the respondents to answer questions. The correct imputation of missing values in such cases is crucial 
and affects the quality of the final research. Statistical analysis methods often require the information 
inherent in data to be complete (no missing values). Otherwise, the methods fail.

Before the basic methods for working with missing values are introduced, the basic terminology will 
be mentioned. There are three natural mechanisms that can cause incomplete data to occur. Namely,  
it is MCAR, MAR, and MNAR, described by Rubin (1976), Rubin and Little (2002), or Baraldi and Enders 
(2010). MCAR (missing completely at random) occurs when the data are missing randomly without 
any observable pattern. MAR (missing at random) happens when the missing values of one variable are 
dependent on another variable, e.g. with decreasing attained level of respondent education, there are more 
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missing values in the variable for respondent income. Finally, MNAR (missing not at random) occurs 
when the observed values depend on each other, e.g., the respondents who have problems with alcohol 
might be less willing to answer in a survey on alcoholism (Petrúšek, 2015).

The simplest solution to dealing with missing values is simply removing the whole incomplete 
multidimensional observations. However, this reduces the number of observations and affects  
the randomness of the sample selection, which is mentioned by Azar (2002) or de Leeuw et al. (2003). 
In the case of pairwise statistical methods (e.g. correlation analysis), we do not have to remove every 
incomplete multidimensional observation. Pairwise methods can, in some cases, avoid the problem  
of deleting the incomplete observations from the sample, but it does not solve it.

One of the simplest methods of imputing the missing values is the replacement of the missing values 
with their mean. This approach may not change the mean value of the variable but can significantly affect 
the variability of the result. This method can safely be used only in cases where the mechanism of missing 
values is MCAR, as Baraldi and Enders (2010) explain.

A more advanced method of missing value imputation uses a regression function. However, even this 
method can significantly affect the variability of the sample. In practice, stochastic regression is often 
used. A random error term is added to the individual predicted values in such a case. This ensures that 
the imputed values do not strictly copy the given regression function and artificially create variability  
of the result, which is desirable in most cases, as Baraldi and Enders (2010) point out.

Apart from regression, there are many simple methods for imputing the missing values. These methods 
are based on simple linear models and other prediction algorithms of machine learning. Significant 
improvement was only achieved by introducing the multiple imputation method (Rubin, 1987) and the 
method based on the maximal likelihood estimation (Allison, 2012). However, even with these methods, 
we cannot avoid some inaccuracy in the estimation of the true values in case the missing data were created 
by the MNAR mechanism. Nevertheless, the estimation is demonstratively better than in the case of the 
simple methods, as Schafer and Graham (2002) say.

In their simplest form, the multiple imputation methods randomly select a subset of the original 
dataset and conduct a regression analysis on it. From each (stochastic) regression function obtained this 
way, missing values can be predicted. The final value is then a result of calculating the mean of these 
values. The procedure can be modified by selecting several subsequent stochastic regressions, where the 
correlation estimation and the mean from the previous step are used to calculate the new regression 
coefficients of each new regression, as Baraldi and Enders (2010) explain.

Methods based on the maximal likelihood are built on a complex mathematical background, which 
is out of the scope of this article. Both advanced methods (multiple imputation and maximal likelihood 
estimation) are currently recommended for handling in missing values. Unfortunately, they can mostly 
work for quantitative data only.

Regardless of the multiple imputation method for categorical data introduced by Akande et al. 
(2017), there is generally no missing value imputation method for categorical data, which would  
be demonstratively better than any other. However, several papers (Sulis and Porcu, 2008; Ferrari et al., 
2011; Wu et al., 2012; Pecáková, 2014; Stavseth et al., 2019) study this topic. Worthy of mention is the 
method based on the rough sets theory. It is a hierarchical method, which looks for the nearest pairs 
within a set of observations with the help of a specially defined metric. If a pair of observations contains 
one missing and one non-missing value in a certain variable, the missing value is replaced by a non-
missing value in this pair. An important concept based on the rough sets theory is a so-called extended 
tolerance relation, explained by Nguyen et al. (2013), which can measure the similarity between a complete 
and an incomplete observation. As a sufficient explanation, we can say that any two identical sets would  
be in the equivalence relation. If a value from a set is deleted and called missing, the equivalence relation 
would no longer exist, but a tolerance relation still exists.
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Feng et al. (2011) introduced the IMIC algorithm. The IMIC is a missing data imputation method 
that can handle both categorical and numerical variables. This algorithm does not need a set of predictor 
variables without missing values for the prediction of missing values in another variable. Due to the 
hierarchical clustering, every single variable in the dataset can contain missing values, and the IMIC 
algorithm fills in all unknown values in one run of the iteration process.

The IMIC algorithm can easily handle missing values in multiple variables in an incomplete dataset. 
It can be easily used by an inexperienced user. These advantages make the algorithm very promising.  
On the other side, it is very time-consuming because the algorithm computes similarity measures between 
each pair of observations in hierarchical clustering. Hence efficient implementation is crucial.

This paper proposes the new improvement of the IMIC algorithm. The two proposed modifications 
consider the number of categories in each categorical variable. Based on this information, the factor, 
which modifies the original measure, is computed. The factor equation is inspired by the Eskin similarity 
measure (Eskin et al., 2002) that is known in the hierarchical clustering of categorical data (Šulc and 
Řezanková, 2014; Cibulková et al., 2021). The results show that as the missing value ratio in the dataset 
grows, better results are achieved using the modification. 

1 THE MAIN PRINCIPLE OF THE IMIC ALGORITHM
The IMIC algorithm utilizes hierarchical clustering. At the beginning of the process, each observation  
Xi (the vector of the variable values) is an isolated cluster; Xi ⊂ X, i ∈ {1, 2, ..., n}, where n is the number 
of observations in the dataset X. The cluster is a name either for two or more observations joined together 
or for one single observation (one element cluster).

In the case of categorical variables only, the algorithm computes ISMDC (Incomplete Set Mixed 
Dissimilarity in Categorical attributes) between two clusters in the rth step of the algorithm as

� (1)

where ,  are two different clusters  ⊂ X and  ⊂ X, k ∈ {1, 2, ..., q}, q is the number of categorical 
variables, the operator | ∙ | : A → N returns the number of elements in the set A and | | returns the 
number of observations in the cluster , symbol ∅ represents empty set, and sk ( , ) is defined as

� (2)

where the symbol * represents a missing value, symbol ∩ represents the set intersection operator,  
∧ represents logical “and”, and sk( ) is defined as

� (3)

where ∨ represents logical “or”, and vakp is the value of the kth variable and the pth value of all  
ck unique values of the kth variable (p ∈ {1, 2, ...,c k}), ak (xi) represents the value of the kth variable 
and the ith cluster. Based on the algorithm of Feng et al. (2011), the set of sk for one cluster is denoted 
as CS feature.
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In the first step (r = 0), every value of sk( ) is set equal vakp or * based on the true value in the 
kth variable and the ith cluster trivially (the cluster is one single observation in the case of r = 0). 
After that, the ISMDC( , ) is computed between every two clusters. In the case of categorical 
variables only, every pair ,  with minimal ISMDC(Xi,Yi) are added together, so these two clusters 

,  rare joined to the new cluster Xi,j
r = Xf

(r+1), where f ∈ {1, 2, ..., q – t}, where t means number 
of cluster pairs added together in the rth step.

When the one step of clustering based ISMDC is finished, the algorithm tries to replace missing 
values in the cluster with one or more missing value * as

� (4)

After that, we set r = r + 1 and proceed new iteration until no missing values are present or r = n.
The ISMDC is increasing as the clusters are growing. The ISMDC in Formula (1) can be understood 

as a ratio of different values to same values in each variable of the new potential cluster. In other words, 
two clusters will be joined more likely if the values in compared variables are the same.

For a better understanding of the algorithm, there is a small example. Assume that the small set of 
binary data is given

where U0 represents the initial set of multidimensional observations of the four observations (clusters) 
({x1}, {x2}, {x3}, {x4}). As can be seen, each of these clusters consists of the values of five variables.  
It is evident that the second observation in the second variable and the third observation in the fourth 
variable contain a missing value.

Firstly, the algorithm computes the set of sk based on Formula (3). For the first cluster X1
0, the CS 

feature will be equal CS(x1) = {{0},{1},{1},{1},{0}}, for the second cluster CS(x2) = {{0},{*},{1},{1},{0}}, 
for the third cluster CS(x3) = {{1},{0},{0},{*},{1}}, and for the fourth cluster CS(x4) = {{1},{0},{1},{0},{1}}.

After that, the algorithm can recompute CS feature (2) and ISMDC for each pair of clusters according 
to the Formula (1). Therefore, the CS feature and ISMDC  are the following (the symbol ∪ denotes the 
pair of clusters):
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.

The minimum of ISMDC for each pair of clusters is ISMDC(x1 ∪ x2), which is equal to zero. Following 
Formula (4), the missing value a2 (x2)= * can be replaced as a2 (x2) = 1. After this replacement

where X1
1 = X1

0 ∪ X2
0 = y1. The CS feature for y1 is equal to CS(y1)={{0},{1},{1},{1},{0}}. 

The CS feature for clusters y2 and y3 remains the same as in the first step, specifically  
CS(y2) = {{1},{0},{0},{*},{1}}, and CS(y3) = {{1},{0},{1},{0},{1}}.

Based Formula (2):

and ISMDC then

                                              .

For this step, the minimum of ISMDC for each pair of clusters is ISMDC(y2 ∪ y3 ). Following  
Formula (4), the missing value a4(y2 ) = * can be replaced as a4(y2) = 0. After this replacement, the algorithm 
will be stopped, because no missing value remains. The final imputed dataset is equal to
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Feng et al. (2011) introduced the theoretical principles of the IMIC method but did not include  
an objective summary of its advantages and disadvantages. One of the advantages of this method is that 
the algorithm is easy to use. There is no parameter that needs to be set up, so no additional knowledge 
or experience with statistical modeling is needed. Another advantage of the method is that it can be used 
on a dataset with mixed categorical and numerical values.

However, the advantages mentioned above can also be seen as disadvantages. There are not enough 
possibilities to improve the accuracy of the result. The main problem of the IMIC method is that  
it is time-consuming. The time complexity is O(n3) (Murtagh, 1983), where n is the number of data points.

2 THEORETICAL PRINCIPLES OF THE PROPOSED MODIFICATIONS
Formula (1) does not consider the actual number of different categories. Based on the results of Šulc  
and Řezanková (2014) it is reasonable to try modifying it like this

� (5)

where:

� (6)

where the factor  is inspired by the Eskin similarity measure proposed by Eskin et al. (2002), 

where nk is the number of categories in the kth variable. If the original algorithm encounters different 
categories in the cluster in the kth variable, it increases the numerator by one. The possible advantage of 
our modification is that the ISMDC can consider the actual number of different categories in the cluster.

The possible problem with this approach is that the situation when the categories are different can 
occur rarely. In such case, the impact of this improvement can be hardly detected. Given this fact,  
the equation can be changed as follow:

.� (7)

The difference from previous improvement, the numerator is increasing for each kth variable by factor 

 and multiply by the number of categories plus one. Adding one to the h(sk( , )) ensures that 

the numerator is always non-zero. Therefore, the factor   is not negligible even if the h(sk( , ))  
equals zero.

3 DATA SOURCE AND APPLICATIONS OF THE PROPOSED MODIFICATIONS
For our experiment, we use the data about students during the 2005–2006 school year, collected by Cortez 
and Silva (2008). We chose the subset of 395 observations (students who attended the mathematical class) 
with the following 17 categorical (binary or nominal) variables (of 33 variables overall):

•	 Sex – student’s sex (binary: female or male),
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•	 School – student’s school (binary: Gabriel Pereira or Mousinho da Silveira),
•	 Address – student’s home address type (binary: urban or rural),
•	 Pstatus – parent’s cohabitation status (binary: living together or apart),
•	 Mjob – mother’s job (nominal, teacher, health care related, civil services (e.g. administrative  

or police), at home or other),
•	 Fjob – father’s job (nominal, teacher, health care related, civil services (e.g. administrative or police), 

at home or other),
•	 Guardian – student’s guardian (nominal: mother, father or other),
•	 Famsize – family size (binary: less than or equal to 3 or greater than 3),
•	 Reason – reason to choose this school (nominal: close to home, school reputation, course preference 

or other),
•	 Schoolsup – extra educational school support (binary: yes or no),
•	 Famsup – family educational support (binary: yes or no),
•	 Activities – extra-curricular activities (binary: yes or no),
•	 Paidclass – extra paid classes (binary: yes or no),
•	 Internet – Internet access at home (binary: yes or no),
•	 Nursery – attended nursery school (binary: yes or no),
•	 Higher – wants to take higher education (binary: yes or no),
•	 Romantic – with a romantic relationship (binary: yes or no),
•	 PassXfail – created variable based on true student’s score which shows if students pass the exam 

or not (binary: yes or no).
The initial dataset is complete without any missing data. In our experiment, the missing values were 

created in each of the 17 variables separately in five different ratios (5%, 15%, 25%, 35%, and 45%).  
In each of these configurations, the missing values were created randomly (as MCAR). It is also 
possible to create the missing values in the whole dataset at once, but there should be no difference due  
to twenty replications of the experiment. The three methods of the missing imputation were used – the 
original IMIC algorithm, Modification 1 based on Formula (5), and Modification 2 based on Formula 
(7). These methods were implemented in the R environment (R Core Team, 2020) and the package 
RCPP (Eddelbuettel and François, 2011; Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018) was used  
in crucial parts for better performance.

The algorithm was executed twenty times for each of the five ratios and three versions of the IMIC 
algorithm for better result stability. In each of these twenty steps, the missing values were generated 
independently. Therefore, there were 300 runs of the algorithm in summary. After that, the results were 
averaged based on the specific missing values ratio and the algorithm version.

This setting allows comparing the accuracy of the algorithm based on the specific method and  
the missing value ratio. For binary variable (with values “0” and “1”), the accuracy can be defined as

� (8)

where TP stands for true positive (the missing value is imputed by “1” correctly), TN for true negative 
(the missing value is imputed by “0” correctly), FP for false positive (the missing value is imputed  
by “1” falsely), and FN for false negative (the missing values is imputed by “0” falsely). This formula  
is defined for binary classification only, but the mean accuracy can be obtained in multiple classification 
cases. In this paper, the final overall mean accuracy is computed as mean accuracy over all variables  
and all twenty repetitions.
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4 EXPERIMENTAL RESULTS
This section is focused on the simulation evaluations obtained on the dataset collected by Cortez  
and Silva (2008). The results in Figure 1 show that the Modification 1 works as well as the original 
IMIC. The Modification 2 works worse when the missing ratio is low, but the mean accuracy improves  
as the ratio of the missing values grows. The difference in overall average accuracy among these methods 
is not that large in absolute value, but as presented below, the pairwise t-test shows that the Modification 
2 works significantly better than the original IMIC on the dataset used.

As illustrated in Figure 1, when the ratio of the missing values hits 15%, the Modification 2 starts 
to be slightly better than the other two implementations. Moreover, if the vector of twenty accuracies 
of original IMIC from each of twenty replications (average over all used variables) is compared to the 
same vector evaluated using Modification 2, the difference is noticeable. For measuring this difference, 
the one-sided pairwise t-test was used, see Table 1. When the ratio of the missing values is equal to 35%, 
the Modification 2 becomes significantly better than the original IMIC algorithm on the dataset used.
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Figure 1	 Average accuracy for different ratios of missing values (dataset with all categorical variables)

Source: Data collected by Cortez and Silva (2008), own calculation

Table 1 Comparison of the Modification 2 with the original IMIC algorithm (percent of the missing values  
and p-values for the t-test)

Share of missing values P-value

5% 0.859

15% 0.266

25% 0.069

35% < 0.001

45% 0.001

Source: Data collected by Cortez and Silva (2008), own calculation
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Figure 3	 Average accuracy for different ratios of missing values (dataset with nominal variables)

Figure 2	 Average accuracy for different ratios of missing values (dataset with binary variables)

Source: Data collected by Cortez and Silva (2008), own calculation

Source: Data collected by Cortez and Silva (2008), own calculation

The dataset can be investigated more deeply. When the variables are split into binary and nominal 
subsets, the accuracy for binary variables is about 65% (Figure 2) despite the 35% accuracy for nominal 
variables (Figure 3). The Modification 2 scores better in both cases regardless of the absolute values.

Figure 5 illustrates that the Modification 2 scores better in almost every twenty replications with a 35% 
missing values ratio compared to Figure 4, which illustrates the same situation with a 5% missing values 
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ratio. It seems that, in the 35% setting, the algorithm is more stable. The coefficient of variation, which 
is defined as the standard deviation divided by mean, is lower in the 35% missing values ratio setting; 
concretely, the coefficient of variation for the Modification 2 equals about 0.0161 compared to the 5% 
missing values ratio setting where the coefficient of variation equals 0.0376.
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Figure 4	 Average accuracy over variables for 20 replications in 5% missing values ratio setting (dataset with all  
	 categorical variables)

Figure 5	 Average accuracy over variables for 20 replications in 35% missing values ratio setting (dataset with all  
	 categorical variables)

Source: Data collected by Cortez and Silva (2008), own calculation

Source: Data collected by Cortez and Silva (2008), own calculation
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CONCLUSION 
For the purpose of this work, the IMIC algorithm was implemented. This IMIC is easy to use and does 
not require any additional assumptions on the dataset’s properties. It can deal with categorical as well  
as numerical variables. The main disadvantage lies in time complexity, which is a problem of hierarchical 
clustering methods in general. Unluckily, this problem makes the simulations very CPU time demanding. 

In this paper, two modifications of the IMIC algorithm were proposed and studied on the dataset 
collected by Cortez and Silva (2008). The first modification, which counts different categories in mismatched 
observations, was less successful than the second, which considers the overall frequency of categories  
in each categorical variable in the whole dataset. The differences in accuracy were not too large  
in absolute values, but the Modification 2 works stably better based on the one-sided pairwise t-test results. 
These results show the notable difference between accuracy for binary and nominal variables. However,  
the second modification works better in both cases. 

Thanks to the full implementation of the IMIC algorithm, there are many ways for future research. Based 
on metrics known from hierarchical clustering, the IMIC algorithm can be modified in many different 
ways. The algorithm, unlike many others, considers the imputed variable itself. Due to this property,  
it can have some advantages when dealing with MNAR type of missing data. It could be examined  
in future work. Last but not least, the algorithm should be rewritten for its better efficiency.
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