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Abstract

In this paper, a novel market risk tracking and prediction strategy is introduced. Our approach takes volatility clustering 
into account and allows for the possibility of regime shifts in the intra-portfolio's latent correlation structure. The 
proposed specification combines hidden Markov models (HMM) with latent factor models that takes into account 
the presence of both the conditional skewness and leverage effects in stock returns.

A computationally efficient expectation-maximization (EM) algorithm based on the Viterbi decoder is developed 
to estimate the model parameters. Using daily exchange rate data of the Tunisian dinar versus the currencies of the 
main Tunisian government's creditors, during the 2011 revolution period, the model parameters are estimated. Then, 
the suitable model is used in conjunction with a Monte Carlo simulation strategy to predict the Value-at-Risk (VaR) 
of the Tunisian government's foreign debt portfolio. The backtesting results indicate that the new approach appears 
to give a good fit to the data and can improve the VaR predictions, particularly during financial instability periods.

INTRODUCTION
According to Saidane (2017) and Mosbahi et al. (2017), the understanding of co-movements among 
asset returns is a central element in the portfolio risk management process. The authors advocate the use 
of a mixture of probabilistic factor analyzers and the conditionally heteroskedastic latent factor model 
to handle co-movements, heterogeneity and time-varying volatility embedded in financial data. They 
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demonstrate how their proposed strategies can be applied to the estimation of the portfolio's Value-at-
Risk (VaR). However, an assumption of these models is that the correlation structure of the portfolio  
is assumed to be constant over time, but recent empirical works (e.g. Saidane, 2019; Tsang and Chen, 2018; 
Hamilton, 2016; Ang and Timmermann, 2012) have shown that this assumption of structural stability  
is invalid for financial returns, especially during crisis periods. For example, when the economy is hit  
by a permanent or temporary exogenous unpredictable shock, the cross-correlation behavior among several 
financial assets and the inter-relationship between volatilities can be expected to shift simultaneously. 
In light of this, we propose a novel market risk prediction strategy considering the possibility of regime 
switching in the interrelationships among several asset classes.

The new approach presented in this paper allows for the possibility of regime shifts in the intra-portfolio's 
latent correlation structure and takes volatility clustering into account. The proposed specification combines 
latent factor models that takes into account the presence of both the conditional skewness and leverage effects 
with hidden Markov models (HMM). To capture the volatility clustering and the leverage effect patterns of 
the return series, we assume that the common variances are modeled separately using quadratic generalized 
autoregressive conditionally heteroskedastic (GQARCH) processes. This provides a more tractable way  
to handle the time-varying volatility, co-movements and the latent heterogeneity in financial data.

For the maximum likelihood estimation we proceed in two steps. In the first step, we use the Viterbi 
decoding algorithm to find the most probable path through the HMM, given the observed data, which 
we take as an estimate of the true path. In the second step, we implement the Expectation-Maximization 
(EM) algorithm introduced by Dempster et al. (1977), to estimate the model parameters. Our proposed 
estimation strategy overcomes the complexity and limitations of the exact learning algorithm, especially 
when the number of hidden states and the length of the time sequence become larger.

The remainder of this paper is organized as follows. In Section 1, we provide further background on 
the factorial hidden Markov volatility model. In section 2, we discuss the inference procedure for the 
latent factors structure. We then present our iterative maximum-likelihood expectation-maximization 
(EM) algorithm in Section 3. We describe the portfolio's VaR simulation-based Viterbi tracking strategy 
in Section 4 and report on the backtesting results in Section 5. In this paper, the currency risk of the 
Tunisian government's foreign debt portfolio during the revolution period of 14 January 2011 is considered 
as the basis for an application to our novel prediction strategy. Our portfolio includes the main debt 
currencies against the Tunisian dinar, such as the European euro, the American dollar, the Japanese yen, 
the Swiss franc and the British pound. Finally, we conclude the paper by summarizing our contributions 
and discussing the future research directions.

1 THE FACTORIAL HIDDEN MARKOV VOLATILITY MODEL
Throughout this paper, we consider a multivariate discrete-time model. The closing price of the k-th asset 
in the portfolio at the t-th trading day is denoted by pk,t, and the opening price at the first trading day by pk,0.

For each t ≥ 1, let rk,t = log(pk,t / pk,t–1) be the log-return of the k-th asset. Our model assumes a Markov 
switching relationship between the observed variables (the log-returns) and a set of q latent factors, 
which depend on the market regime. This new framework, called factorial hidden Markov volatility 
model (FHMV), is defined by:

rt = Φj zt + ϵt , (1)

where: ∀ t = 1, … , T, rt is a (p × 1) vector of log-returns.
The transition probabilities of the first order homogenous hidden Markov process from state i to state 

j (∀ i, j = 1, … , n) are represented by p(St = j | St–1 = i), where j is the actual market regime at time t, given 
the previous regime i at time t – 1. In a specified regime St = j, Φj is the (p × q) factor loadings matrix.
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The common latent factors zt are generated from the multivariate normal distributions:

zt ~ N(0, Ωj) , (2)

where: 0 and Ωj denote, respectively, the (q × 1) mean vectors and (q × q) diagonal covariance matrices 
of the latent vectors zt.

The diagonal elements of Ωj (common variances) are described by switching univariate quadratic 
GARCH(1,1) processes. Under a particular regime St = j since St–1 = i, the l-th common factor variance 
is given by:

 (3)

Assuming that ,  > 0, if zl,t–1 < 0, its impact on the variance ωl,t is lower than in the case where zl,t–1 > 0.
Finally, the (p × 1) vector of specific factors can be written as follows:

ϵt ~ N(μj, Λj) , (4)

where: μj and Λj are, respectively, the (p × 1) mean vectors and (p × p) diagonal covariance matrices  
of the specific factors.

Assumption 1: In order to insure the positivity of the common variances and the stationarity of the 
covariance structure of the studied series, we introduce some constraints on the parameters of the quadratic 
GARCH specification, such as: , ∀j = 1, … , n, l = 1, … , q.

Assumption 2: To guarantee the model identification in (1), we assume that ∀j, rank (Φj) = q and  
p ≥ q. The factors zt and ϵt are also assumed to be uncorrelated and mutually independent. For more 
detailed discussions of the identification problem, the reader can refer to Saidane and Lavergne, (2011), 
and Carnero (2004).

2 INFERENCE OF THE LATENT FACTORS STRUCTURES
Our model can be expressed as a switching state-space system with a measurement equation:

rt = μj + Φj zt + ϵt , (5)

and a transition equation:

zt = 0 ∙ zt–1 + zt , (6)

In order to find the optimal sequences of hidden states St and latent factors zt, we can use the Viterbi 
decoding algorithm based on the minimization of the Hamiltonian cost function given by the following 
equation:

H(r1:T, Z1:T, S1:T) ≃ c + S1
'(–logπ) +  S1

'(–logP) St–1 +   [log | Λj | + (rt – Φjzt – μj )'Λj
–1 

(rt – Φj zt – μj)] St (j) +   [log | Ωj | + zt
' Ωj

–1zt] St (j), 
(7)

where: r1:τ = {r1, r2, … ,rτ}, Z1:τ = {z1, z2, … , zτ}, S1:τ ={S1, S2, … ,Sτ} are, respectively, the sequences of observed 
returns, latent common factors and HMM states up to time τ; π the vector of initial state probabilities, of 
length n-states and summing to 1; P the matrix of transition probabilities of the hidden Markov chain, 
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the sum of all elements in the i-th row [pi1 … pin] is 1, ∀ i = 1, … , n and St = [St(1), … , St(n)]', where  
St (j) = 1, if St = j and 0 otherwise.

If we denote by S*
1:T the optimal sequence of HMM states, the posterior distribution p(Z1:T, S1:T | r1:T)  

can be approximated as:

p(Z1:T, S1:T | r1:T) ≃ η(S1:T – S*
1:T) p(Z1:T |S1:T, r1:T) ,                                                            (8)

i.e. the posterior distribution of the HMM state sequence p(S1:T | r1:T) is approached by its mode, where 
η(y) = 1 for y = ϕ and zero otherwise. The optimal sequence of HMM states can formally be obtained by 
solving the dynamic optimization program: S*

1:T =  p(S1:T | r1:T). In this case, an almost optimal 
solution can be reached by maximizing recursively the probability of the best HMM sequence up to time t:

δt,j =  p(S1:t–1, St = j, r1:t) ≃  {p(rt | St = j, St–1 = i, S*
1:t–2(i), r1:t–1) p(St =j | St–1 = i) 

×  p(S1:t–2), S t–1 = i, r1:t–1)},                                                                (9)

where: S*
1:t–2(i) =  δt–1,i is the "optimal" HMM sequence up to time t – 1 when the market state  

is in regime i at time t – 1.
Firstly we define the "optimal" partial Hamiltonian cost up to time t of the observed log-return sequence 

r1:t when the market state is in regime j at time t:

δt,j =  H(Z1:t,{S1:t–1, St = j}, r1:t) .                                                             (10)

To calculate this cost correctly, we need the optimal filtered estimates of the common latent factors  
z j

t|t = 𝔼[zt|r1:t, St = j], the one-step ahead predictions of the common latent factors z i(j)
t|t–1 = 𝔼[zt|r1:t–1,  

St = j, St–1 = i] and their optimal filtered estimates, z i(j)
t|t = 𝔼[zt|r1:t, St = j, St–1 = i]. We need also the predicted 

and filtered common variances:

Ωi(j)
t|t–1 = 𝔼[(zt – z i(j)

t|t–1) (zt – z i(j)
t|t–1)' | r1:t–1, St = j, St–1 = i],                                                           (11)

Ωij
t|t = 𝔼[(zt – z j

t|t) (zt – z j
t|t)' | r1:t, St = j, St = j],                                                            (12)

and the covariance matrices:

Ωi(j)
t|t = 𝔼[(zt – z j

t|t) (zt – z j
t|t)' | r1:t, St = j, St–1 = i],                                                     (13)

Ω(j)k
t|τ = 𝔼[(zt – z j(k)

t|τ ) (zt – z j(k)
t|τ )' | r1:τ, St = j, St+1 = k],                                                     (14)

where: z j(k)
t|τ = 𝔼[zt | r1:τ, St =j, St+1 = k]. From the prediction step of the switching Kalman filter (Saidane 

and Lavergne, 2007) we obtain the time updating formula for the common latent factors, z i(j)
t|t–1 = 0,  

∀ i, j = 1, …, n and their corresponding covariance matrices, Ωi(j)
t|t–1 = diag[ωi(j)

l,t|t–1], where  
ωi(j)

l,t|t–1 = βj
0l + βj

1l zi
l,t–1|t–1 + βj

2l[zi2
l,t–1|t–1 + ωi

l,t–1|t–1] + βj
3l ωi

l,t–1|t–2, for l = 1, … , q. Given the information set  
D1:t–1 = {r1:t–1, Z1:t–1, S1:t–1}, the predicted variances are calculated as the conditional expectations of the 
predicted volatilities, 𝔼(ωl,t | D1:t–1), and from the total variance formula 𝔼(zi2

l,t–1 | D1:t–1) = Var(zi
l,t–1 | D1:t–1) 

+ 𝔼(zi
l,t–1 | D1:t–1)2 = ωi

l,t–1|t–1 + zi2
l,t–1|t–1, we obtain the filtered variances ωi

l,t–1|t–1. When a novel observation 
r_t becomes available, all the prediction estimates can be updated recursively via the Kalman filtering 
equations:
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z i(j)
t|t  = z i(j)

t|t–1 + K t(i, j)[rt – μj – Φj zi(j)
t|t–1],                                                      (15)

Ωi(j)
t|t  = [Ik – K t(i, j)Φj] Ωi(j)

t|t –1 = Ωi(j)
t|t–1 – K t(i, j)Γi(j)

t|t–1 K t(i, j)',                                                     (16)

with Γi(j)
t|t–1 =Λj + Φj Ωi(j)

t|t–1 Φj
' and K t(i, j) = Ωi(j)

t|t–1 Φj
' Γi(j)–1

t|t–1. The innovation cost δt,t–1,i,j related to each 
transition from state i to state j, is given by:

δt,t–1,i,j =  log|Γi(j)
t|t–1| +  [rt – μj – Φj zi(j)

t|t–1]' Γi(j)–1
t|t–1[rt – μj – Φj zi(j)

t|t–1] – log pij .         (17)

A substantial part of this cost is exclusively due to the transition of the latent factors, as illustrated 
by the innovation component in Formula (17). The remaining part (– log pij) reflects the transition 
of the market state from regime i to regime j. In this case, the minimization of the global cost at time  
t requires the selection of the optimal previous market state i: δt,j = {δt,t–1,i,j + δt–1,i}. The resulting 
index is then recorded in the regime switching record, λt–1,j = {δt,t–1,i,j + δt–1,i) }. As a result, we 
obtain for each time t the "optimal" filtered latent factors z j

t|t = z t|t
λt–1,j(j) and their corresponding variances  

Ωj
t|t = Ωt|t

λt–1,j(j) = diag[ ].
When all the log-returns r1:T become available, we obtain the optimal global cost δT

* = {δT,j}. Then, 
we use the index of the optimal final state in order to decode the optimal sequence of HMM states:  
jT

* = {δT,j) }. To get the best regime for all time steps, we trace back through the market regime 
switching record: jT

* = λt,jt+1*  .
We note here that the smoothing gain matrix Lt

(j)k = Ωj
t|t 0k

'  = 0 and the smoothing equations 
are simply given by:

z t|T
(j)k

  = z j
t|t + Lt

(j)k[zk
t+1|T – zj(k)

t+1|t] = z j
t|t ,                                                       (18)

Ωt|T
(j)k

  = Ωj
t|t + Lt

(j)k[Ωk
t+1|T – Ωj(k)

t+1|t] Lt
(j)k' = Ωj

t|t .                                                      (19)

Following the smoothing procedure developed by Saidane and Lavergne (2008), the sufficient statistics 
for our estimation problem will be given by: 𝔼(St|∙) = St (j*), 𝔼(St St–1

'|∙) = St(j*) St–1(j*)' and 𝔼(zt St(j)|∙)  
= zt|T

jt* ), if j = jt
* and 0 otherwise. In this case, the operator 𝔼(|∙) denotes the expectation with respect  

to the distribution p(Z, S|r).

3 MAXIMUM LIKELIHOOD ESTIMATION
We propose a two-step learning algorithm combining the expectation maximization (EM) algorithm 
(Dempster et al., 1977) and the Viterbi decoding algorithm in order to estimate the parameters Θ of our 
model. The E-step subsists in calculating the expected value of the complete data log-likelihood function 
with respect to the conditional distribution of the unobserved variables (Z, S) given the observed returns 
r and Θ(e), the value of the parameter at the current iteration (e). The conditional expectation is then, 
maximized with respect to Θ at the M-step. In this case, the auxiliary function that will be maximized 
can be approximated as follows: 

Q(Θ,Θ(e) ≃  S1(j) log p(S1) –  St(j) St–1(i) log pij –    St(j)[log|Λj| + 𝔼{(rt – μj – Φj zj
t)'

Λj
–1(rt – μj – Φj zj

t)|r1:T), Θ(e)}] –    St(j) 𝔼[log(ωj
l,t) + |r1:T, Θ(e)],                             

   (20)
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and the conditional expectations can be derived using the sufficient statistics obtained by the Viterbi 
algorithm in Section 3.

The basic idea behind our algorithm is summarized as follows: At the end of each iteration (e) we find 
Θ(e+1), the optimal value of the parameter Θ that maximizes the function in equation (20) over all possible 
values of Θ. Then Θ(e+1) replaces Θ(e) in the E-step and Θ(e+2) is chosen to maximize Q(Θ,Θ(e+1)), and  
so on until convergence. However, given the nonlinear dependency of the common variance parameters 
in the last summation of Formula (20), we can maximize in a first time this function with respect  
to the probabilities of the initial state πj, the transition probabilities pij, the specific means μj, the factor 
loadings Φj and the specific variances Λj. In a second time, the parameters of the common variances can 
be determined numerically.

For the initial state probabilities πj, we use the Lagrange multipliers approach subject to the condition 
that the sum ∑n

j=1 πj = 1, and we obtain the updated estimation:

                                                         (21)

We use also the Lagrange formalism, subject to the unity constraint  ∑n
j=1 pij =1, to obtain the updated 

transition probabilities:

                                 (22)

The maximization of the auxiliary function with respect to the specific means yields the updated 
estimates:

                                (23)

The updated l-th row of the factor loadings matrix  can be expressed as follows:

                              (24)

where: μl,j is the specific mean of the l-th asset return rl,t under the market regime j. Then, given these 
updated parameters, we can update the specific variances according to the following rule:

          (25)

In a second time, given the new values of πj, pij, μj, Φj and Λj, we can approximate the conditional 
distribution of the log-returns by the normal distribution: rt |r1:t–1, St = j, S1:t–1 ∼ N[μj, Γj

t|t–1] (e.g. Harvey  
et al., 1992). In this case, Γj

t|t–1 = Λj + Φj Ωj
t|t–1 Φj

' and Ωj
t|t–1 = diag[ωt|t–1

λt–1,j(j)] is the conditional expectation 
of Ωt, given the sequences r1:t–1 and S1:t–1, obtained via the modified Kalman filter approach based on the 
Viterbi decoder developed in Section 3.

Using these approximations and ignoring the initial conditions, we obtain the following pseudo log-
likelihood function:
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L* = c –   St(j)[log|Γj–1
t|t–1| + (rt – μj)'Γj–1

t|t–1(rt – μj)] .           (26)

In a first stage, we ignore the elements in the last summation of Formula (20) and then we maximize 
the remaining terms with respect to (πj, pij, μj, Φj and Λj) using the EM algorithm. During this step,  
the parameters of the quadratic GARCH processes β = {β0, β1, β2, β3} are kept fixed to their values 
obtained in the previous iteration. In a second stage, we optimize the pseudo log-likelihood in Formula 
(26) with respect to β, using the values of πj, pij, μj, Φj and Λj found in the first step. The R package 
NlcOptim, developed by Chen and Yin (2019), can be used in this step to find quickly and most accurately  
the parameters of the conditionally heteroskedastic component β.

4 THE FHMV APPROACH FOR VALUE-AT-RISK PREDCTION
Formally put, Value-at-Risk is a financial metric that measures the worst expected loss that could happen 
in an investment portfolio over a given horizon for a given confidence level. In this section a general 
Monte Carlo simulation FHMV-based framework for value-at-risk prediction, under regime switching 
dynamics, will be proposed. This approach will then be used, in Section 5, for the evaluation of the 
currency risk associated with the Tunisian government's foreign debt portfolio during the revolution 
period of 14 January 2011.

4.1 Forecasting future market regime changes
Given the information set available at time t, D1:t, and the actual market regime i, the conditional mean 
of the multivariate predictive distribution given by our FHMV model is as follows:

𝔼(r t+1|D1:t) = μj ,                                                         (27)

and the conditional variance-covariance matrix is given by:

Γj
t+1|t = Λj + ΦjΩj

t+1|tΦj
'  .                                                         (28)

Within this framework, the forecasts of the future market regime jumps and the model parameters 
updating process are implemented simultaneously. Thus, by the end of each transaction day the closing 
prices will be included in the database. Thereafter, the parameters of our model will be updated using 
the newer information set available at this point in time, and the updated one-step-ahead forecasts of 
the common latent factor variances will be derived via the relation:  jl,t+1|t = βj

0l + βj
1lzi

l,t|t + βj
2zi2

l,t|t + βj
3ωi

l,t|t. 
Then, the future market regime St+1 = j can be obtained as a solution of the optimization problem:  

t+1|t =  p(St+1 = j | St = it
*), where it

* is the optimal market regime at time t obtained by the 
Viterbi algorithm, through the state transition record λt–1,i at each time step. The FHMV model with the 
optimal future hidden state t+1|t, will be used in the simulation procedure as the data generating process,  
to calculate the VaR of our portfolio.

4.2 The simulation strategy
Our simulation strategy consists of the following steps:
1. Firstly, we define the coverage rate α of the VaR.
2. Then, taking into account the presence of leverage effects and conditional skewness in financial time 

series, we simulate different return scenarios from the conditional distribution of the common latent 
factors zs

t+1|t, using the optimal specification obtained by the Viterbi algorithm at time t (Section 5.1).
a. We use in a first time the normal distribution N(0,Iq) to generate the standardized factors z*

t+1.
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b. Then, we compute the lower triangular Cholesky factor Ωj*
t+1|t of the variance-covariance matrix 

Ωj
t+1|t, and we obtain: zs

t+1|t = Ωj*
t+1|t z*

t+1.
3. After that, we simulate different return scenarios from the conditional distribution of the specific 

factors ϵs
t+1|t, using also the optimal specification obtained by the Viterbi algorithm at time t.

a. We generate in a first time from the normal distribution N(0,Ip) the standardized specificities ϵ*
t+1|t.

b. Then, we compute the lower triangular Cholesky factor Λj
* of the variance-covariance matrix Λj, 

and we obtain: ϵs
t+1|t = Λj

*ϵ*
t+1.

4. In the fourth step, we compute m different portfolio’s returns for the period t + 1 as, Rs,t+1|t = γ1 rs
1,t+1|t 

+ γ2 rs
2,t+1|t + ⋯ + γp rs

p,t+1|t, where γ1, γ2, … ,γp denote the portfolio weights of the p risk factors and rs
t+1|t 

= μj + Φj zs
t+1|t + ϵs

t+1|t (∀s = 1, … , m).
5. Finally, to compute the portfolio’s VaR for the period t + 1, we sort the simulated values in ascending 

order and we exclude the α% lowest returns Rs,t+1|t. In this case, the predicted VaR is the minimum of 
the remaining returns.

5 NUMERICAL EXPERIMENTS USING EXCHANGE RATE DATA
In this empirical experiment, we use the FHMV model to analyze the dynamic latent correlation structure 
of the five dominant currencies in the Tunisian government's foreign debt portfolio. The optimal 
specification obtained with the Viterbi algorithm will then be used to evaluate, through a backtesting 
exercise, the performance of the new methodology in detecting the foreign exchange risk associated with 
this portfolio. All the numerical results and the graphs in this section are obtained using the R statistical 
freeware, version 4.1.

5.1 Data presentation and summary
We focus in this section on the main five currencies forming the basis for the Tunisian government's 
foreign debt portfolio, namely the European euro (EUR), the American dollar (USD), the Japanese yen 
(JPY), the Swiss franc (CHF) and the British pound (GBP). Our dataset, downloaded from the Yahoo 

Table 1 Basic descriptive characteristics of the daily exchange rate returns from 2/1/2010 to 30/12/2012

Statistic EUR/TND USD/TND JPY/TND CHF/TND GBP/TND

Mean 0.000327 0.000381 0.000179 0.000274 0.000363

Max 0.0439 0.0423 0.0514 0.0424 0.1468

Median 0.000198 0.000255 0.000163 0.000308 0.000212

Min –0.0538 –0.0619 –0.0718 –0.0653 –0.0083

Std. Dev. 0.00425 0.00510 0.00674 0.00583 0.00620

D’Agost. test
7.49623 2.72961 4.14286 –6.21753 9.57321

(0.0000) (0.0047) (0.0000) (0.0081) (0.0000)

A-Glyn. test
18.751 16.173 15.927 16.369 21.916

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

LB. test
117.67 108.21 41.962 62.114 123.813

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

J-Bera. test
65.321 29.655 14.533 26.123 34.259

(0.0000) (0.0000) (0.0074) (0.0000) (0.0000)

Note: The values into brackets represent the p-values of the corresponding tests.
Source: Own construction
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Finance website, spread over the period between 2/1/2007 and 30/12/2012, consists of 1 500 daily exchange 
rates for the different currencies expressed in terms of Tunisian dinar (TND). This dataset includes the 
period of social mobilization and political change in Tunisia (the revolution of 14 January 2011). In this 
case, taking into account the period of social instability we will be permitted to investigate the efficiency 
of our Jump-VaR methodology during crisis times.

In Table 1, we give a variety of descriptive statistics to study the distributional characteristics of the data 
and to test the empirical skewness and Kurtosis against the values of normal distributions (e.g. D'Agostino, 
1970; Anscombe-Glynn, 1983). We implemented also the normality test (Jarque-Bera, 1980). From these 
results, we note that all the log-returns are non-normally distributed, they are still skewed (positive 
for EUR, USD, JPY and GBP and negative for CHF). We note also a positive excess kurtosis for all the 
currencies. The results of the Ljung-Box (1978) statistic show the presence of volatility clustering. This 
imply that we have a non-constant conditional volatility, and the use of a Markov-switching specification 
with a time-varying co-movement structure for the log-return series, is more realistic in this situation.

5.2 A preliminary latent structure analysis of the data
In order to select the most appropriate model that fits better our dataset, we used the Akaike (AIC) and the 
Bayesian (BIC) information criteria. To this end, we trained standard and conditionally heteroskedastic 
models using one or two common factors and a number of hidden states varying between one and three, 
on the period from 2/1/2010 to 30/12/2012. Then, we used the selection criteria to identify the best model 
with the minimum AIC and BIC values.

The results reported in Table 2 show that the FHMV model with two common factors and two HMM 
states is the best one fitting our dataset. For this optimal specification, the initial state probability vector 
and the transition probability matrix are as follows:

In Figure 1, we depict the percentage of the variability of the different currencies expressed in terms 
of specific and common factors. During the crisis period, we can see that, on average, 90% and 95% of 
the variances of the EUR and the CHF are explained by the first common factor. During the normal 

Table 2 AIC and BIC values for the different specifications over the period 2/1/2010–30/12/2012 (750 observations)

The number of 
common factors Criterion

Number of hidden states

1 2 3

1

AIC
2 436.2 1 973.6 2 199.2

(2 826.9) (2 610.5) (2 585.9)

BIC
2 518.3 2 424.4 2 591.0

(3 097.6) (2 731.8) (2 644.3)

2

2 394.8 1 958.3 2 123.8

(3 016.4) (2 415.2) (2 275.5)

2 509.6 2 151.8 2 269.9

(3 211.1) (2 597.8) (2 403.7)

Note: The selection criteria values for the standard models are given into brackets.
Source: Own construction
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period (before and after the 2011–2012), we can see that the first common factor explains on average 50%  
and 90% of the variability of the EUR and CHF.

The contribution of the second common factor to the variability of the EUR and CHF, during  
the instability period, is almost insignificant. During the revolution period, this factor explains more 
than 85% and 65% of the variability of the USD and JPY. However, the contribution of the first factor  
to the JPY variability is around 45% during the normal period. For the GBP, the contribution of this 
factor is around 35% over the whole period.

From these results, we can conclude that the first common factor is associated with the volatility 
dynamics of the European currencies. During the social mobilization period, the second factor is associated 
with the volatility dynamics of the American and Japanese currencies. We can conclude also that the 
first common latent factor expresses the relative value of the TND against the major trading partner’s 
currencies (the European community countries). The second factor reproduces the relative value of the 
TND against a basket of global currencies in which the American and Japanese currencies are dominant.

From the estimation results presented in Table 3, we note that the first common factor can be 
regarded as a European factor: it represents a basket of currencies, where the EUR dominates with 
relatively high loadings (50% in the first regime and 76% in the second regime). The weight of the GBP 
is relatively reduced in this basket. We note also that the second common factor represents a basket  

Figure 1 The percentage of variability of the different log-returns associated to the common and specific factors  
 over the period 2/1/2010–30/12/2012

Source: Own construction
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of currencies, where the USD dominates with relatively high loadings (52% in the first regime and nearly 
60% in the second regime). In order to satisfy the identification constraints (e.g. Saidane and Lavergne 
2011), we have taken ϕ1,2,j = 0, ∀j = 1, 2, which imply that the European currency EUR is entirely absent 
from the second factor. The relative weight of the CHF is also reduced in this factor. Hence, we can 
consider the second common factor as an American factor.

From Table 4, it appears that the excess of volatility during the political instability period (the second 
hidden regime) is relatively due to the significant increase in volatility persistence (e.g. Klaassen, 2002). 
We observe from this table that the sum of the volatility parameters, β2 and β3, of the two common factors 
in the second regime is nearly close to 1.

All the previous conclusions are strongly confirmed by the estimated values of the specific variances, 
given in Table 3. Hence, during the social mobilization period, the specific variance of the British pound 
is relatively high, which indicates its aberration from its latent factorial class. On the other hand, the 
specific variances of the European euro and the American dollar are the smallest ones, which indicate 
their determinant role in their latent factorial class.

Finally, in Figure 2, we depict the correlation structure of the different log-returns during the period 
2/1/2010 to 30/12/2012. The graph picks up co-movement increases between all the log-returns from 

Table 3 Estimation results of the optimal FHMV model during the period 2/1/2010–30/12/2012

Model parameters
(1e-04)

Currencies

EUR USD JPY CHF GBP

1.6104 1.5216 1.1622 –1.1131 1.3109

2.1724 3.0221 1.7447 0.0156 1.7932

7.7028 1.9780 1.2636 2.6804 1.7611

0.0000 5.1303 2.3204 0.3217 2.1032

9.1526 0.7315 0.3949 1.4710 0.2389

0.0000 8.9482 2.5801 0.6206 2.8312

0.6405 1.0623 1.5049 1.1458 2.1004

0.2230 0.9071 1.2047 1.0167 2.7103

Source: Own construction

Table 4 Estimated parameters of the conditionally heteroskedastic components of the optimal FHMV model during
 the period 2/1/2010–30/12/2012

Common Variance 
parameters β0 β1 β2 β3

Factor 1

Regime 1 0.1224 0.0009 0.2411 0.3648

Regime 2 0.1521 0.1382 0.2363 0.7601

Factor 2

Regime 1 0.0843 0.1774 0.1892 0.4667

Regime 2 0.1102 0.1430 0.2711 0.7092

Source: Own construction
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the beginning of 2011 until near the end of the study period. This result confirms the financial contagion 
that affected the Tunisian economy during the revolution period.

5.3 Selection of the most appropriate VaR model
In order to assess the currency risk associated with the Tunisian government's foreign debt portfolio 
during the social mobilization period of 14 January 2011, we divided in a first time our dataset into 
calibration set and test set. The calibration, called also training, set contains the log-returns of the 
different exchange rates during the period 2/1/2007–30/12/2009 (750 observations). The test, called also 

Figure 2 Plot of the estimated correlations from the best FHMV model, during the period 2/1/2010–30/12/2012

Source: Own construction
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backtesting, set contains the remaining 750 observations covering the period 2/1/2010–30/12/2012. Then, 
we used the Monte Carlo simulation strategy (Section 4.2) to evaluate the VaR of our portfolio. For each 
coverage rate α, we used the portfolio weights given in Table 5. Here, the weight of each exchange rate γ_k  
is determined by the relative share of currency k in the payment of the total foreign debt. For example,  
in 2010 Tunisia settled 61.3% of its foreign loans in Euro, 14.3% in American dollar, 16.1% in Japanese yen, 
2.4% in Swiss franc and 5.9% in British pounds. Hence, in 2010, γ1 = 0.613, γ2 = 0.143, γ3 = 0.161, γ4 = 0.024   
and γ5 = 0.059. For 2011 and 2012, the weights are determined in the same way.

In a second time, the effectiveness of our methodology is justified by some experiments, using 
unconditional (Kupiec, 1995) and conditional (Christoffersen, 2012) tests and the rolling sample method 
based on a one-day moving window scheme with the coverage rates from the level of 0.005 to 0.1 by 0.005. 
All these calculations have been carried out by simulations from our FHMV model, the mixed factorial 
hidden Markov model (MFHMM) by Saidane (2019), the latent factor model with time varying volatility 
(FM) by Saidane (2017) and the classical Monte Carlo simulation method (CMC) by Mosbahi et al. (2017).

In order to compromise between precision and efficiency, we generated m = 25 000 scenarios from 
each competing model (e.g. Saidane, 2022; Lu et al., 2014; Bastianin, 2009; Fantazzini, 2008). Then, 
we calculated the VaR, the exception rates and the likelihood ratios for the proportion of failure test  
(LR-pof), the independence test (LR-ind) and the conditional coverage test (LR-cc).

All the results of the backtesting experiments are given in Table 6 and Figures 3–4. The Kupiec and 
Christoffersen backtesting results show that the optimal FHMV model, with 2 latent factors and 2 hidden 
states, provides good results and gives exception rates very close to the target (the true coverage rates α). The 
likelihood ratios associated with the unconditional and independence tests, for our proposed model, are always 
lower than the critical values, which imply a significant conditional coverage tests for all the confidence levels.2

Table 5 Structure of the Tunisian foreign debt by settlement currency for the period 2010–2012

Table 6 Backtesting results for the FHMV model with two hidden states and two common factors

Date
Indicators

EUR USD JPY GBP CHF

31/12/2010 61.3 14.3 16.1 5.9 2.4

31/12/2011 56.8 20.1 15.3 5.6 2.2

31/12/2012 59.6 18.9 13.8 5.1 2.6

Source: Monetary and financial statistics of the Tunisian central bank

Confidence level Exception rate 1st exception LR-pof LR-ind LR-cc

0.950 0.050 18 1.7934 1.1152 2.9086

0.960 0.040 22 1.8372 1.1256 2.9628

0.970 0.029 38 2.0839 1.1398 3.2237

0.980 0.022 38 2.1856 1.1458 3.3314

0.990 0.013 56 2.3122 1.1593 3.4715

Source: Own construction

2   The critical values for the Kupiec and Christoffersen tests are, respectively, χ2 (1) = 3.8414 and χ2(2) = 5.9915  
for 95% VaR.
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For the coverage rates from 0.5% to 2%, Figure 3 shows promising results for the optimal FHMV 
model compared to those given by the best MFHMM (with 2 mixture components and 2 latent factors).  
For the significance level 2%, our FHMV model gives, for example, an exception rate equal to 2.17%, versus 
2.45% obtained by the MFHMM. From this figure, we can see also that the optimal MFHMM looks better 
than the FM and CMC, especially at low confidence levels. Hence, we can argue that the FHMV model 
is the more precise and yields higher-quality predictions, as compared to the other competing models.

In order to compare the results given by the different models, we used the squared relative prediction 
error criteria S = ∑20

i=1[(Ei – αi)/αi]2 , where Ei are the estimated exception rates obtained with the different 
specifications, and α_i the coverage rates. It appears from the results that the most adequate model to 
evaluate the VaR of our portfolio, during this period, is the FHMV framework. This specification gives 
the estimated exception rates closest to all the true significance levels with S = 0.4561. The second ranked 
model is the MFHMM (S = 2.5824), the third is the FM with (S = 4.9783), and the CMC is the worst 
one with S = 6.0673.

Finally, we can see from Figure 4 the significant effect of the volatility shocks on the predicted VaR 
given by the optimal FHMV model. Hence, we can argue that the major reason for the bad results given 
by the CMC, FM, and to a lesser degree the MFHMM, is that they do not take into account the abnormal 
switching behaviors, which can affect the volatility and the co-movement dynamics in financial markets 
during crisis periods.

Figure 3 Exception rates for various confidence levels from the rolling window experiments

Source: Own construction
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CONCLUSION
This paper develops a new multivariate approach for Value-at-Risk (VaR) prediction. Our strategy 
considers the possibility of regime jumps in the intra-portfolio's latent correlation structure and allows for 
time-varying volatility in the factor variances. The proposed framework combines factor analysis models 
with GQARCH processes and hidden Markov models. During financial crisis periods, this specification 
provides a more tractable way to capture simultaneously the switching interrelations between assets and 
the time-varying volatility of each individual asset.

The accuracy of the new prediction approach in comparison with other existing models (such  
as the mixed factorial hidden Markov model, the latent factor model with time varying volatility and the 
classical Monte Carlo method) is evaluated through a real dataset example from the Tunisian foreign 
exchange market for the period 2/1/2010 to 30/12/2012. Our strategy aims to select the best model that 

Figure 4 The VaR exceptions obtained by the optimal FHMV model for different coverage rates and different  
 portfolio weights

Source: Own construction
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could predict the VaR of the Tunisian government's foreign debt portfolio during the social mobilization 
period of 14 January 2011. In that period the Tunisian economy has experienced the longest, deepest  
and most broad-based recession in its history since the 1978. The main results of the empirical example 
and the backtesting experiments, based on the rolling sample method, show that the new approach appears 
to give a good fit to the data, allows to more close forecasts to the market changes and can improve the 
VaR predictions and offer more accurate VaR estimates than the other competing models for all coverage 
rates from 0.5% to 10%.

We conclude that our Viterbi-based decoding strategy using the factorial hidden Markov volatility 
model seems to be a useful tool for portfolio risk management and control, especially during periods 
of financial market stress. These results support our argument for integrating time-varying volatility  
and regime jumps into the risk measurement framework. In the forthcoming works, we intend to reflect 
the interaction between the common latent factors with a dynamic structure for the idiosyncratic variances. 
We will address also nonlinear behaviors, non-homogeneous transition probabilities and other areas  
of application, like options, or credit derivatives.
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