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Abstract

This paper examines the carbon dioxide (CO2) Environmental Kuznets curve (EKC) hypothesis of a balanced 
panel of 50 middle-income countries over the period 1996–2013 using a dynamic spatial panel data model with 
country and time-period fixed effects. Using a Bayesian comparison approach, we systematically searched for 
the most suitable spatial weights matrix describing the spatial arrangement of the countries in the sample. We 
found substantial spatial dependence effect in CO2 emissions across the sample of middle-income countries, 
highlighting the influence these countries exert on their neighbors. Besides, the empirical results showed that 
the relationship between economic growth and CO2 emissions shaped as an inverted-U trajectory. Furthermore, 
it has been found that trade openness and energy intensity are the main factors on slightly increasing CO2 
emissions, while the urbanization contributes to relative decrease in CO2 emissions. 

INTRODUCTION
Over the three last decades, global warming, and particularly increasing temperatures, have a significant 
deep impact on economic productivity (Burke et al., 2015). Indeed, economic production has warmed 
the earth by releasing mass emissions of greenhouse gas in the atmosphere. In particular, the ever-
increasing global emissions of CO2 appear to be aggravating this issue. Accordingly, both the global 
environmental change and sustainable development become the critical challenge for human beings 
today (Roy Chowdhury and Moran, 2012). Exploring the potential relationship between economic growth  
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and environmental degradation is also becoming a necessity in order to provide policy recommendations 
for taking a sustainable development trend in countries.

To explore the way of sustainable development, Grossman and Krueger (1991 and 1995) put forward 
the EKC theory to depict the relationship between economic growth and environmental degradation. 
Different econometric methodologies3 have been used to investigate the CO2 EKC hypothesis in different 
countries and regions. However, mixed empirical results are reported (Richmond and Kaufmann, 2006; 
Aldy, 2006; Galeotti et al., 2006; Kaika and Zervas, 2013a, 2013b, among others). Scholars have shown that  
the formulation of the EKC hypothesized multiple shaped EKC such as U, inverted-U, N, etc. For instance, 
Grossman and Krueger (1991) pointed out that economic growth can improve environmental quality after 
an economy has reached an adequate level of development. Furthermore, there were pieces of evidence 
that the testing results depended on the specific econometric models (Roy Chowdhury and Moran, 2012).

The mixed results further confirm that studies based on traditional cross-sectional panel data  
or time series techniques would provide incorrect inferences because of ignoring the spatial correlations 
dimension. Compared with traditional econometric methods, the spatial econometric techniques can  
be used to explore whether the local regional economic performances depend on the neighbors or not. 
While conventional econometric approaches have been used in most EKC studies, there is little evidence 
in the context of the nexus between economic growth and CO2 emissions using spatial econometric 
techniques (Zhao et al., 2014; Kang et al., 2016; Meng et al., 2017; Meng and Huang, 2018; You and Lv, 2018).

As acknowledged by LeSage and Pace (2009), ignoring spatial dependence would lead to biased 
estimated parameters. Besides, Roy Chowdhury and Moran (2012) argued that spatial effects represent  
an important factor influencing the impact of economic growth on CO2 emissions since several 
environmental problems, including CO2 emissions, are inherently spatial. Furthermore, Anselin (2001) 
argues that spatial units (countries, states, counties, provinces, cities, etc.) can interact strongly with 
one another via channels such as trade, technological spillover, capital inflow, and common political, 
economic, and environmental policies. Recent research suggests that the closer the two countries are  
in terms of geographic distance, the more likely the economic activities and environmental degradation 
within each country will affect one another (You and Lv, 2018). In other words, economic growth  
and CO2 emissions across countries are not independent. If such dependencies are not considered, some 
bias will be produced when estimating the EKC. As argued by Elhorst (2010a, 2010b), spatial econometric 
techniques provide ways to test and accommodate many forms of dependence among observations.

This study contributes to the empirical literature in several ways. First, it offers a more rigorous 
examination of the relationship between CO2 emissions and economic growth for middle-income countries. 
The influence factors of CO2 emissions are not only per capita real income but also other social, economic 
and industrial variables such as trade openness, urbanization, energy intensity and population which will 
be incorporated in the economic model to improve the accuracy of EKC fitting. Second, this paper uses 
the recently developed dynamic spatial panel models with controls for spatial and time-specific effects  
in order to capture the spatial interactions between explanatory variables and CO2 emissions focusing  
on the middle-income countries. Specifically, this study seeks to explore the CO2 emissions Kuznets 
curve in middle-income countries, and a comparative analysis between the non-spatial panel data model  
and the dynamic spatial panel data model is conducted to validate the spatial spillovers effects of variables  
in order to provide more rigorous references for policymakers. Third, using a Bayesian comparison approach 
developed by LeSage (2014, 2015), this study tests and compares simultaneously four frequently used 
dynamic spatial panel data models and twelve spatial weight matrices describing the mutual relationships 
among the middle-income countries, all within a common framework, which helps clarify the impact  
of neighboring countries on CO2 emissions.

3   A large strand of empirical literature is summarized in Table 1.
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The remainder of this paper is organized as follows. Section 1 outlines the theoretical framework  
of the empirical model specification, the conventional spatial autocorrelation measures and the methodology 
of dynamic spatial panel data models. Section 2 provides a description of the data. Section 3 is devoted  
to the empirical estimation results and discussions. Final section concludes this paper and provides some 
policy suggestions.

Table 1 Summary of previous EKC studies on CO2 emissions

Authors Time period Regions Econometric 
methodology Shaped EKC

Holtz-Eakin and Selden 
(1995) 1951–1986 130 countries panel data no EKC relationship

Carson et al. (1997) 1990 US states cross-sectional 
data inverted-U-shaped relationship

Roberts and Grimes 
(1997) 1962–1991 low-medium-high income 

countries time series

inverted-U-shaped relationship  
for rich countries 

no EKC relationship for low/medium 
income countries

Lim (1997) 1980s 
onwards South Korea time series no EKC relationship

Moomaw and Unruh 
(1997) 1950–1992 16 industrial OECD countries panel data N-shaped relationship

Schmalensee et al. (1998) 1950-1990 141 countries panel data inverted-U-shaped relationship

De Bruyn et al. (1998) 1960–1993 
intervals

Netherlands, W. Germany, 
UK, USA time series no EKC relationship

Galeotti and Lanza (1999) 1970–1996 110 countries panel data inverted-U-shaped relationship

Agras and Chapman 
(1999) various years 34 countries panel data no EKC relationship

Perrings and Ansuategi 
(2000) 1990 114 countries panel data no EKC relationship

Lindmark (2002) 1870–1997 Sweden time series inverted-U-shaped relationship

Friedl and Getzner (2003) 1960–1999 Austria time series N-shaped relationship

Cole (2004) 1980–1997 21 countries panel data inverted-U-shaped relationship

Dijkgraaf and Vollebergh 
(2005) 1960–1997 OECD countries panel data inverted-U-shaped relationship

Aldy (2005) 1960–1999 US states panel data
inverted-U-shaped relationship  

in few states
no EKC relationship (consumption model)

Azomahou et al. (2006) 1960–1996 100 countries panel data no EKC relationship

Richmond and Kaufmann 
(2006) 1973–1997 36 countries panel data no EKC relationship

Lantz and Feng (2006) 1970–2000 5 Canadian regions panel data no EKC relationship

Kunnas and Myllyntaous 
(2007) 1800–2003 Finland time series no EKC relationship

Coondoo and Dinda 
(2008) 1960–1990 88 countries panel data

inverted-U-shaped relationship  
for Europe

no EKC relationship for whole

Lee et al. (2009) 1960–2000 89 countries panel data

N-shaped relationship  
for the whole panel

inverted-U-shaped relationship 
in middle-income, American and 

European countries

Aslanidis and Iranzo 
(2009) 1971–1997 77 Non-OECD countries panel data no EKC relationship
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Table 1   (continuation)

Authors Time period Regions Econometric 
methodology Shaped EKC

Dutt (2009) 1960–2002 124 countries panel data
no EKC relationship (1960-1980)
Inverted-U-shaped relationship 

(1984-2002)

Halicioglu (2009) 1960–2005 Turkey time series no EKC relationship

Jalil and Mahmud (2009) 1971–2005 China time series inverted-U-shaped relationship 

Aslanidis and Iranzo (2009) 1971–1997 non-OECD countries panel data no EKC relationship

Narayan and Narayan 
(2010) 1980–2004 43 developing countries panel data  

and time series

inverted-U-shaped relationship 
 in 15 countries (time series)

inverted-U-shaped relationship  
in Middle Eastern and South Asian 

countries (panel data)

Acaravci and Ozturk 
(2010) 1960–2005 19 European countries time series inverted-U-shaped relationship  

in 2 countries

Iwata et al. (2011) 1960–2003 28 countries (17 OECD,  
11 non-OECD countries) panel data no EKC relationship

Wang et al. (2011) 1995–2007 28 China's provinces panel data U-shaped relationship

Jaunky (2011) 1980–2005 36 high-income countries panel data
inverted-U-shaped relationship  

in 5 countries
no EKC relationship for whole panel

Fosten et al. (2012) 1830–2003 United Kingdom time series inverted-U-shaped relationship

Esteve and Tamarit (2012) 1857–2007 Spain time series inverted-U-shaped relationship

Du et al. (2012) 1995–2009 29 China's provinces panel data no EKC relationship

Ahmed and Long (2012) 1971–2008 Pakistan time series inverted-U-shaped relationship

Saboori et al. (2012) 1980–2009 Malaysia time series inverted-U-shaped relationship

Saboori and Sulaiman (2013) 1980–2009 Malaysia time series no EKC relationship

Ozturk and Acaravci (2013) 1960–2007 Turkey time series inverted-U-shaped relationship

Burnett et al. (2013) 1970–2009 48 US states spatial panel data inverted-U-shaped relationship

Onafowora and Owoye 
(2014) 1970–2010 8 countries time series

inverted-U-shaped relationship  
in two of the eight countries
N-shaped relationship in six  

of the eight countries

Shahbaz et al. (2014a) 1971–2010 Tunisia time series inverted-U-shaped relationship

Farhani and Ozturk (2015) 1971–2012 Tunisia time series no EKC relationship

Apergis and Ozturk (2015) 1990–2011 14 Asian countries panel data inverted-U-shaped relationship

Yin et al. (2015) 1999–2011 China (29 provinces) panel data inverted-U-shaped relationship

Wang et al. (2016b) 1995–2011 30 China's provinces spatial panel data N-shaped relationship

Kang et al. (2016) 1997–2012 30 China's provinces spatial panel data inverted-N-shaped relationship

Li et al. (2016) 1996–2012 28 China's provinces spatial panel data inverted-U-shaped relationship

Wang and Liu (2017a) 1992–2013 341 China's cities
panel data  

and dynamic 
panel data

inverted-U-shaped relationship

Meng and Huang (2018) 1995–2012 331 China's cities spatial panel data no EKC relationship

You and Lv (2018) 1985–2013 83 developed and 
developing countries spatial panel data inverted-U-shaped relationship

Source: Created by the authors
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1 THEORETICAL FRAMEWORK AND METHODOLOGY
1.1 EKC Hypothesis
Originally, EKC is an empirical hypothesis that characterizes an inversely U-shaped curve  
for the relationship between economic growth and environmental quality. Several indices of environmental 
quality degenerate with economic growth. As suggested by Grossman and Krueger (1995), the environment 
deterioration starts to decrease after reaching a threshold. Furthermore, Maddison (2006) pointed out that 
development may promote environmental quality as a result of economies of scale from pollution reduction, 
technological upgrade, industrial structure escalation, and public’s demand for a clean environment.  
In this paper, the considered model for the EKC is a polynomial function type that is expressed as follows: 

Yit = αi + β1Xit + β2Xit
2 + β3 Zit + εit , (1)

where Y stands for the indices of environmental degradation, while X refers to the economic growth level, 
usually measured by per capita Gross Domestic Product (GDP), and Z includes other influential factors 
for the environment. The polynomial function form of EKC offers to us an adequate tool to estimate  
the nonlinear relationship (if it exists) between economic growth and CO2 emission.

1.2 STIRPAT Model
In this paper, we use the STIRPAT model (Dietz and Rosa, 1997; York et al., 2003) as our theoretical 
foundation to test the existence of an EKC for CO2 emissions related to affluence. Ehrlich and Holdren 
(1971) first proposed the concept of IPAT (Influence, Population, Affluence, and Technology).  
The IPAT model relates environmental impact to population, affluence and technology. Nevertheless, this 
model is only an overly simplified function form and just indicates that the impact of human activities  
on the environment can fully be differentiated into population, affluence, and technology effects. 
Therefore, the IPAT model cannot estimate to what extent a specific factor affects the environment  
in such a framework, not to mention test any hypothesis. An additional limitation is that the IPAT model 
has been criticized as being primarily a mathematical equation which is not suitable for hypothesis testing, 
and also assuming a rigid proportionality between effects and factors.

To overcome these limitations, Dietz and Rosa (1997) proposed a stochastic version of IPAT, known 
as STIRPAT and later refined by York et al. (2003), expressed by the following equation:

Iit = α0Pit
α1Ait

α2Tit
α3 eit , (2)

where I denotes the environmental impact, P, A and T indicate human activities, i.e., respectively, 
population, affluence (per capita), and technological influences (per unit of economic activity). α0, α1, 
α2 and α3 are coefficients to be estimated and e denotes the random disturbance (the proportionality  
of IPAT model pre-assume α0 = α1 = α2 = α3 = 1). The subscript i refers to the ith country and vary across 
observations.

The regression form of the STIRPAT model for estimation and hypothesis testing is obtained  
by logarithmic transformation of the variables in Formula (2). In this case, the coefficients α1, α2,  
and α3 stand for the Ecological Elasticity (EE) which measures the sensitivity of environmental impacts  
to a change occurring in a driving force. It is defined as the proportion of change in environmental impacts 
due to its significant determinants. Using natural logarithms, the STRIPAT model can be converted  
to a convenient linear specification for panel estimation:

lnIit = a0 + α1lnPit + α2lnAit + α3lnTit + lneit . (3)
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The above basic model analyses the impacts of population (P), economic development (A)  
and industrial structure (T) on the environmental impacts, but ignores other important factors influencing 
CO2 emissions. According to the EKC hypothesis, CO2 emissions is a function of par capita GDP  
and square of per capita GDP (Kasman and Duman, 2015; Kang et al., 2016; Meng and Huang, 2018; You 
and Lv, 2018, among others). Therefore, a quadratic or higher term of affluence can enter the STIRPAT 
specification. Besides, we further investigate the effects of additional factors on CO2 emissions such  
as urbanization, energy intensity and trade openness (Martínez-Zarzoso et al., 2007; Pao and Tsai, 
2011; Madlener and Sunak, 2011; Zhang et al.,2014; Al-Mulali et al., 2015; Kang et al., 2016; You  
and Lv, 2018; Lv and Xu, 2019, among others). Accordingly, we applied an augmented STIRPAT  
for our study purpose:

lnCO2it = a0 + α1ln(POPit) + α2ln(RGDPit) + α3ln(RGDPit)2 + α3ln(TECHit) + α4ln(TROit) 
+ α5ln(URBAit) + α6ln(EIit) + α7CVit + μi + ηt + εit , (4)

where CO2 denotes per capita carbon dioxide emissions; TRO represents the trade openness; POP is the 
total population and measures the impact of demographic factors on CO2 emissions; RGDP stands for 
per capita real GDP, which is seen as a proxy for economic factors; URBA denotes the urbanization level, 
which is typically associated with increased economic activity resulting in high energy consumption, and 
thus accelerating the emission of CO2 (Martínez-Zarzoso and Maruotti, 2011; Adams and Klobodu, 2017); 
TECH is the technological improvement, measured by percentage of industrial activity with respect to 
total production, and represents a proxy for the level of environmentally damaging technology (Martínez-
Zarzoso et al., 2007); EI refers to the energy intensity4 per unit of GDP and can be considered as a proxy 
for energy consumption (Martínez-Zarzoso et al., 2007); μi is the individual fixed effect, which controls for 
all space-specific time-invariant variables that if omitted could potentially bias the coefficient estimates; 
ηt denotes the time period effects; ε is the standard error term; and CVit stands for the potential control 
variables that could influence the CO2 emissions.

In general, the estimation of the empirical model, i.e., Formula (4), tests the statistical 
significance of the coefficients α2 and α3. The following cases may occur (Dinda, 2004; Kaika 
and Zervas, 2013a):

i. If α2 = α3 = 0, then there is no relationship between economic growth and CO2 emissions.
ii. If α2 > 0 and α3 = 0, then a monotonic increasing or linear relationship exists between economic 

growth and CO2 emissions.
iii. If α2 < 0 and α3 = 0, then a monotonic decreasing or linear relationship exists between economic 

growth and CO2 emissions.
iv. If α2 > 0 and α3 < 0, then an inverted-U-shaped relationship (EKC) exists between economic growth 

and CO2 emissions.
v. If α2 < 0 and α3 > 0, then a U-shaped relationship exists between economic growth and CO2 emissions.

Note that only the (iv) case indicates an EKC-relationship. Accordingly, the EKC is a specific form 
of the CO2-income relationship. If the (iv) case holds, then the turning point is calculated as follows:

RGDP*= exp(–(α2/2α3)) . (5)

4   Energy intensity was measured as energy use divided by GDP at purchasing power parity (PPP) prices, where energy use 
refers to apparent consumption (production + imports – exports).
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1.3 Spatial autocorrelationl
Spatial autocorrelation is a spatial data analysis method which is used to examine the degree of spatial 
dependence or autocorrelation in spatial data. It includes i) the global spatial autocorrelation which  
is used to estimate the overall degree of spatial dependence, and ii) the local indicators of spatial 
association (LISA) which is used to assess the impact of individual locations on the magnitude  
of the global statistic and to identify the locations and types of clusters. The spatial weights were created 
by rook contiguity rule and applied to describe the spatial relationships among countries. We explored 
the spatial distribution of per capita CO2 emissions from 50 middle-income countries by calculating  
the Global Moran's I (Moran, 1950) and LISA (Anselin, 1995) using GeoDa software. The Global Moran's 
I statistic can be specified as follows:

 (6)

where –1 ≤ I ≤ 1; yi and yj are the values of the per capita CO2 emissions of countries i and j, respectively; 
 is equal to the average of the per capita CO2 emissions of all countries; wij is the element in row  

i column j of a spatial weights matrix and denotes the spatial weight between country i and country j;  
and n is the number of countries.

At a given level of statistical significance, I > 0 points to positive spatial autocorrelation, and the greater 
the value of I, the more obvious the spatial correlation. I < 0 refers to negative spatial autocorrelation,  
and the smaller the value of I, the greater the spatial difference. Otherwise, I = 0 points to a random 
spatial distribution. As argued by Anselin and Florax (1995), a significant positive Moran's I value 
indicates spatial clustering, while a significative negative Moran's I value indicates spatial dispersion across  
the sample of geographical units.

To evaluate the statistical significance of the Global Moran's I, both a z-score and p-value can  
be calculated. The zI-score for the statistic I is computed as follows:

 (7)

where E(I) = –1/(n–1); V(I) = E(I2) – E2(I).

Alternatively, LISA is calculated as follows:

 (8)

where zi denotes the observation for country i on per capita CO2 emissions as a deviation from the mean, 
and zi

∘ is the spatial lag for location i, obtained as follows:

 (9)

1.4 Dynamic spatial panel data models
A spatial econometric model is a linear regression model extended to include spatial interaction 
effects among the dependent variable, the explanatory variables, the error terms, or some combination 
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thereof. Including all spatial lags yields a so-called general nesting spatial (GNS) model (Elhorst, 2014a, 
2014b). When accounting for the dependent variable lagged one period, such a specification is known  
as a dynamic GNS model. The econometric counterpart of the dynamic GNS model reads, in vector form, as:

Yt = τY(t–1) + δWYt + ηWY(t–1) + Xtβ + WXt θ + μ + λt ιN + νt , (10)

νt = λWνt + εt , (11)

where Yt is an N × 1 vector consisting of one observation of the dependent variable for every spatial unit  
(i = 1, …, N) in the sample at a particular point in time t(t = 1, …, T), which for this study  
is the CO2 emissions ; Xt denotes an N × K matrix of exogenous or predetermined explanatory variables.  
Note that a vector or a matrix with subscript t – 1 stands for its serially lagged value, while a vector  
or a matrix premultiplied by W denotes its spatially lagged value. Moreover, the N × N matrix W denotes  
a non-negative matrix of known constants describing the spatial arrangement of the spatial units  
in the sample. It should be stressed that the diagonal elements of the matrix W are set to zero by assumption, 
since no spatial unit can be viewed as its own neighbor. Furthermore, the parameters τ, δ and η denote  
the response parameters of successively the dependent variable lagged in time, Yt–1, the dependent variable 
lagged in space, WYt, and the dependent variable lagged in both space and time, WYt–1. The variables WYt 
and WYt–1 stand for contemporaneous and lagged endogenous interaction effects among the dependent 
variables. The symbols β and θ stand for K × 1 vectors of the response parameters of the exogenous 
explanatory variables. Furthermore, the error term specification consists of different components:  
the vector νt that is assumed to be spatially correlated with autocorrelation coefficient λ; the N × 1 vector 
εt = (ε1t, …, εNt)' that consists of i.i.d. disturbance terms, which have zero mean and finite variance σ2;  
the N × 1 vector μ = (μ1, …, μN)' that contains spatial specific effects μi and is meant to control for all 
spatial-specific, time-invariant variables whose omission could bias the estimates in a typical cross-
sectional study; and the time specific effects λt(t = 1, …, T), where ιN is a N × 1 vector of ones meant  
to control for all time-specific, unit-invariant variables whose omission could bias the estimates  
in a typical time-series study.

It should be mentioned that spatial- and time period-specific effects can be treated as fixed or random 
effects. Otherwise, direct interpretation of the coefficients in the dynamic GNS model is not straightforward 
since they do not represent true partial derivatives (LeSage and Pace, 2009). Elhorst (2012, 2014a, 2014b) 
show that the matrix of (true) partial derivatives of the expected value of the dependent variable with respect 
to the kth independent variable for i = 1, …, N in year t for the long-term is given by the N × N matrix:

 (12)

whose diagonal elements represent long-term impacts on the dependent variable of unit 1 up to N  
if the kth explanatory variable in the own country changes, while its off-diagonal elements represent 
the long-term impacts on the dependent variable if the kth explanatory variable xk in other countries 
changes. The average diagonal element of this matrix can be used as a summary indicator for  
the direct effect, whereas the average row sum of its off-diagonal elements represents a summary indicator  
of the spillover effect. Furthermore, these impacts are independent of t since the spatial weight matrix 
W is not time-varying, and error terms drop out due to the use of expectations.

As acknowledged by LeSage and Page (2009), the direct effect is defined as the average diagonal 
element of the full N × N matrix expression on the right-hand side of Formula (12); the indirect effect 
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(i.e. country spillover effects) is the average row or column sum of the off-diagonal elements. Moreover, 
short-term direct and country spillover effects can be obtained by setting τ = η = 0.

It should be stressed that the dynamic GNS model is problematic since is its parameters are not identified 
(Anselin et al., 2008; Elhorst, 2014a, 2014b). Indeed, the interaction effects among the dependent variable 
and the error terms cannot be distinguished formally, if the interaction effects among the explanatory 
variables are also included. Therefore, one of the two spatial interaction effects should be excluded.  
If the spatial interaction effects for the dependent variable are excluded (δ = η = 0), the dynamic SDEM 
specification results, while the spatial multiplier matrix [(1 – τ)I – (δ + η)W]–1 reduces to 1/(1 – τ)I.

If the spatial interaction effects among the error terms is left aside (λ = 0), a dynamic spatial Durbin 
model (SDM) results. Although the SDM specification does not account for interaction effects among 
the error terms, which reduces the efficiency of the parameter estimates, it does not affect the consistency 
of the parameter estimates. Besides, it does not influence the direct or spillover effects derived from 
Formula (12).

As pointed out by Anselin et al. (2008), LeSage and Pace (2009), and Elhorst (2014a, 2014b), among 
others, an important difference between the SDEM and SDM specifications is that the country spillover 
effects in the first model are local, whereas in the second model they are global in nature. Local spillovers 
occur at other countries only if they are connected to each other. In other words, local spillovers occur 
when δ = 0 and θ ≠ 0, and countries are connected. If two countries i and j are unconnected, such that  
wij = 0, a change in xik of country i cannot affect the dependent variable of country j, and vice versa. Global 
spillovers instead occur when δ ≠ 0 and θ = 0, regardless of whether countries are connected, so a change 
to xik of country i due to the spatial multiplier matrix (I – δW)–1 gets transmitted to all other countries, 
even if the two countries are unconnected, i.e., wij = 0.

If CO2 emissions at a local level can spread to other countries across the continent or around  
the world, even if they are not directly connected, then the SDM or SAR specifications make more sense, due  
to their ability to capture such global spillovers. If other countries are connected to each other,  
the SDEM specification may be more appropriate since it captures only local country spillovers. Otherwise,  
the choice between local and global spillovers depends on the specification of the spatial weight matrix W. 
It should be stressed that a sparse spatial weight matrix with only a limited number of non-zero elements, 
such as a binary contiguity matrix, is more likely to occur in combination with a global spillover model 
(δ ≠ 0, θ = 0), while a dense spatial weight matrix in which many off-diagonal elements are non-zero 
(e.g. inverse distance matrix) is more likely in combination with a local spillover model (δ = 0, θ ≠ 0). 
Therefore, the choice of spatial model and spatial weight matrix might be improved if they take place 
within a common framework.

In this paper, we employ a Bayesian comparison approach (LeSage, 2014; LeSage, 2015) in order  
to choose between a global spillover model, i.e., SDM, and a local spillover model, i.e., SDEM,  
as well as to choose between different potential specifications of the spatial weight matrix W. It should  
be noted that this approach allows determining the Bayesian posterior model probabilities of the SDM 
and SDEM specifications given a particular spatial weight matrix, as well as the Bayesian posterior model 
probabilities of different spatial weight matrices given a particular spatial panel model specification. These 
probabilities are based on the log marginal likelihood of a spatial panel model obtained by integrating 
out all parameters of the model over the entire parameter space on which they are defined. If the log 
marginal likelihood value of one spatial panel model or of one spatial weight matrix W is higher than 
that of another model or another W, the Bayesian posterior model probability is also higher. It should 
be stressed that the classical LR, Wald and/or LM statistics compare the performance of one spatial 
model against another spatial model based on specific parameter estimates within the parameter space. 
However, the main strength of the Bayesian comparison approach is that it compares the performance  
of one spatial model against another spatial model on their whole parameter space (LeSage, 2014; LeSage, 
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2015). Furthermore, statistical inferences drawn on the log marginal likelihood function values for  
the SDM and SDEM models are further justified since they have the same set of explanatory variables, 
i.e., Xt and WXt, and are based on the same uniform prior for δ and λ. This prior takes the following form:

p(δ) = p(λ) = 1/D , (13)

where:

D = 1/ωmax – 1/ωmin , (14)

and ωmax and ωmin denote respectively the largest and the smallest (negative) eigenvalue of the spatial 
weight matrix W. Note that this prior requires no subjective information on the part of the practitioner 
since it relies on the parameter space (1/ωmin, 1/ωmax ) on which δ and λ are defined, where ωmax = 1  
if W is row normalized. Finally, and depending on the outcomes of the Bayesian comparison approach, 
either the SDM or the SDEM model is estimated using maximum likelihood estimation (MLE). Then, 
the estimation results could serve to test the following null hypotheses:

H0 : θ = 0 and = 0 , (15)

H0 : θ + δβ = 0 and + δτ = 0 . (16)

That is, it is possible to test whether the dynamic SDM might be reduced to a dynamic SAR 
model or dynamic SEM. Both tests follow a chi-squared distribution with K + 1 degrees of freedom  
(i.e., the number of spatially lagged explanatory variables and the spatially lagged dependent variable) 
and take the form of a Wald test, since the simplified models have not been estimated.

2 DATA AND VARIABLES
In this paper, we use a balanced panel sample of 50 countries5 over the period 1996–2013. In contrast  
to high income countries, time series data on energy use in many middle-income countries are very 
limited. Therefore, we limited our sample to 50 middle-income countries due to the availability  
of reliable data. Furthermore, the beginning of the sample period is motivated by the fact that  
the transition of several middle-income countries from socialism to capitalism has likely led to a structural 
break in environmental policy in general. The dependent variable is CO2 emissions (metric tons of per 
capita carbon dioxide emissions), which are considered as the primary greenhouse gas responsible  
for global warming and proxies for overall environmental pollution in a country.

In our empirical analysis, affluence is the natural log of per capita real GDP (real GDP divided  
by population at the end of the year), population is the natural log of total population in a country, 
technology is the natural log of the weight of the industry in economic activity (the proportion  
of the added value of industry to GDP), energy intensity is the natural log of total energy use per dollar 
of GDP (kg of oil equivalent per capita), trade openness is the natural log of trade openness (exports plus 
imports as percent of GDP) and urbanization is the natural log of urbanization (% urban population  
in the total population).

All data except per capita real GDP are obtained from World Development Indicators (WDI) online 
database. The series of real GDP (at constant 2011 national prices in millions 2011 US$) is obtained  

5   Table A1 in the Appendix provides the list of sample countries.
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from the Penn World Table version 9.1.6 Table 2 summarizes the descriptive statistics of the above-
mentioned variables.

The correlation coefficients of the variables are displayed in Table 3. CO2 emissions have a relatively 
low and significant correlation with per capita real GDP and trade openness. While the correlation 
between CO2 emissions and urbanization is moderate, it is rather strong and significant between CO2 

emissions and energy intensity. However, the correlation between CO2 emissions and population  
is weak and statistically significant. To test for multi-collinearity issue, a variance inflation factor (VIF) test  
is used over a data range of 1.48–2.15, with a mean value of 1.842. As shown in Table 3, the VIF values 
are all less than the cut-off value of 10, indicating that there is no multi-collinearity.

6   <https://www.rug.nl/ggdc/productivity/pwt>.

Table 2 Summary statistics

Table 3 Correlation coefficient matrix and VIF test

 ln CO2 ln POP ln RGDP ln EI ln TECH ln TRO ln URBA

 Mean 0.5759 16.8724 11.9313 6.7971 3.4205 –0.4238 3.9542

 Median 0.5483 16.8309 11.7698 6.6574 3.3771 –0.3901 4.0414

 Maximum 2.7502 20.9690 15.7035 8.5501 4.3492 0.6021 4.4900

 Minimum –1.9926 13.9235 9.1564 4.8820 0.9909 –1.9393 2.8726

 Std. Dev. 1.0152 1.4326 1.5232 0.7266 0.3087 0.5127 0.3680

 Skewness –0.2151 0.2950 0.2372 0.2305 –0.4442 –0.4432 –1.0374

 Kurtosis 2.5662 2.6978 2.1477 2.5733 9.8599 2.9691 3.6196

 Observations 900 900 900 900 900 900 900

Source: Own estimates

 VIF ln(CO2) ln(RGDP) ln(TRO) ln(URBA) ln(POP) ln(TECH) ln(EI)

ln(CO2) 1.0000

ln(RGDP) 1.65 0.2650*** 1.0000

(0.0000)

ln(TRO) 1.91 0.1807*** –0.4337*** 1.0000

(0.0000) (0.0000)

ln(URBA) 1.92 0.6076*** –0.0255 0.1150*** 1.0000

(0.0000) (0.4441) (0.0005)

ln(POP) 1.48 0.0678** 0.7499*** –0.5907*** –0.2078*** 1.0000

(0.0420) (0.0000) (0.0000) (0.0000)

ln(TECH) 2.15 0.3000*** –0.0110 0.2331*** 0.2682*** –0.0040 1.0000

(0.0000) (0.7411) (0.0000) (0.0000) (0.9053)

ln(EI) 1.94 0.9263*** 0.2049*** 0.1745*** 0.5841*** 0.0100 0.2767*** 1.0000

 (0.0000) (0.0000) (0.0000) (0.0000) (0.7656) (0.0000)  

Notes: * denotes p<0.1. ** denotes p<0.05. *** denotes p<0.01.
Source: Own estimates
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3 EMPIRICAL RESULTS AND DISCUSSIONS
3.1 Exploratory spatial data analysis
Following Abreu et al. (2005), among others, we examined the spatial dependence and spatial heterogeneity 
in our dataset using the exploratory spatial data analysis (ESDA) approach. To further test whether 
spatial dependence exists or not, we computed the global Moran’s I to identify spatial dependence among  
the observations, where a significant positive Moran’s I value indicates spatial clustering and a negative 
Moran’s I value with statistical significance indicates spatial dispersion across the sample countries 
(Anselin and Florax, 1995; Anselin, 2006). Furthermore, global Moran’s I is a measure of the geographical 
concentration of a distribution. Generally, the larger the global Moran’s I index, the more significant  

the spatial dependence among countries. A trend 
of rapid spatial autocorrelation can be clearly seen 
in Figure 1. 

The results of the global spatial autocorrelation 
for the CO2 variable by using global Moran's I 
statistic are summarized in Table 4. Using both 
the z test and its corresponding p value, we test  
the statistical significance of the Moran’s I values. 
As shown in Table 4, the Moran's I index values are 
positive and statistically significant at the 5% level 
or better. This means that air pollution in middle-
income countries exhibits significant positive 
spatial autocorrelation, which ranges from 0.2627 
to 0.3875. Note that the high positive values signal 
the occurrence of similar attribute values over space, 
and hence spatial clustering. This means that CO2 
emissions in middle income countries are spatially 
autocorrelated between 1996 and 2013. They also 
appear to be less spatially clustered in 2013 than 
in 1996.

Figure 1 Moran’s I Scatter Plot for country-level CO2  
 emissions in middle income countries,  
 1996–2013

Source: Own construction

Table 4 Statistical tests of global Moran's I of CO2 emissions in middle-income countries

 Year
Moran's I

Year
Moran's I

Statistic Z score p-value Statistic Z score p-value

1996 0.3875*** 2.7119 0.0090 2005 0.2871** 2.1404 0.0220

1997 0.3594** 2.5717 0.0120 2006 0.3087** 2.2915 0.0190

1998 0.3299** 2.3633 0.0160 2007 0.3106** 2.2977 0.0190

1999 0.2933** 2.1327 0.0220 2008 0.3375** 2.4963 0.0160

2000 0.2627** 1.9544 0.0280 2009 0.2929** 2.1792 0.0200

2001 0.2715** 2.0171 0.0230 2010 0.2956** 2.2065 0.0220

2002 0.2725** 2.0214 0.0280 2011 0.3166** 2.3489 0.0160

2003 0.2670** 1.9838 0.0260 2012 0.3396** 2.5056 0.0140

2004 0.2825** 2.0987 0.0250 2013 0.3159** 2.3438 0.0160

Average 0.3094** 2.2721 0.0180

Notes: * denotes p<0.1. ** denotes p<0.05. *** denotes p<0.01. The null hypothesis is no global spatial autocorrelation.
Source: Own estimates
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In a second step, we turn to spatiotemporal patterns of country level CO2 emissions. To visually explore 
the spatial dependence of the middle-income countries’ CO2 emissions, we undertook a local LISA analysis 
with the aim of identifying local spatial autocorrelations. The results of the LISA allowed us to identify 
a detailed local pattern of spatial clustering in relation to changes in per capita CO2 emission levels.  
The resulting LISA cluster maps of the countries for which the local Moran’s I statistics are statistically 
significant at the 5% level are displayed in Figures 2, 3 and 4. These figures reveal characteristics  
of significant local spatial autocorrelation in the distribution of initial CO2 level in 1996, CO2 level in 2013 
and the average annual CO2 level over the study period. Spatially, countries with high levels of per capita 
CO2 emissions are clustered with neighboring countries that have similar values. Besides, countries with 
low values of per capita CO2 emissions clustered with neighboring countries with similar values. The red 
color denotes the High-High (H-H) clusters (i.e., high values surrounded by high values), while the blue 
represents Low-Low (L-L) clusters (i.e., low values surrounded by low values). Note that H-H and L-L 
clusters are the main types of spatial distribution. Furthermore, the pink areas indicate H-L associations 
and the blue-gray areas denote Low-High (L-H) correlations (i.e., low values surrounded by high values). 
The gray clusters represent countries that are not associated in a spatially significant manner.

The number and the distribution of each cluster of countries also display regional dynamic 
characteristics. For instance, in 1996, the numbers of countries belonging to H-H and L-L cluster were  
5 and 3 respectively, accounting for 16% of the sample of middle-income countries. This phenomenon  
is consistent with the situation revealed by a relatively large global Moran’s I (0.3875). Correspondingly, 
only 2% of all countries conformed to the remaining High-Low (H-L) and L-H classifications. These 
results indicate the existence of a significant dual structure in the spatial distribution of country’s per 
capita CO2 emissions in 1996. However, by 2013, the number of H-H and L-L countries had decreased 
by 3 and 2, respectively, indicating that the spatial extent of dependence of per capita CO2 emissions had 
weakened markedly between 1996 and 2013. The corresponding global Moran’s I index also decreased 
(0.3159). These results imply that, for geographic data, it is almost inevitable that “close things are more 
related than distant things,” a phenomenon that can be described in terms of “spatial dependence.”  
In addition, the computed findings confirm our previous analysis of spatial dependence in per capita CO2 

Figure 2  Local Moran Scatter Plot map for ln(CO2) in 1996

Source: Own construction
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Figure 3  Local Moran Scatter Plot map for ln(CO2) in 2013

Figure 4  Local Moran Scatter Plot map for ln(CO2) over 1996 to 2013

Source: Own construction

Source: Own construction

emissions at the country level. Note that if such dependence is ignored, standard econometric models 
risk being biased in ways that conceal the impact of the determinants they purport to study – in our 
case, changes in per capita CO2 emissions in middle income countries. Therefore, we empirically test 
whether the spatial panel econometrics models are better than conventional econometrics and chose 
the appropriate model to analyze the impact factors of per capita CO2 emissions in middle income 
countries.
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3.2 Spatial econometric regression results
To decide which type of model (spatial vs. non-spatial) best fits the data, we begin our investigation  
by testing several different model specifications. This testing procedure is a mixture of a specific-to-general 
approach and general-to-specific approach (Elhorst, 2012). Note that the procedure begins by testing  
the non-spatial panel model against the spatial lag and spatial error models. If the non-spatial panel 
models are rejected, then the spatial Durbin model (SDM) is tested to determine if it can be simplified 
to either the spatial lag or spatial error model. It should be stressed that this step seeks corroborating 
evidence from the first step.

Table 5 reports the estimation results for the non-spatial panel data models: pooled OLS only (no fixed 
or time-period effects), spatial fixed effects only (no time-period effects), time-period fixed effects only 
(no fixed effects) and both spatial fixed effects and time-period fixed effects, respectively.

To investigate the null hypothesis that the spatial fixed effects and time-period effects are jointly 
insignificant, we performed a likelihood ratio (LR) test. The null hypothesis that the spatial fixed effects 
are jointly insignificant is rejected at the 1% significance level (1 806.2527; 50 degrees of freedom;  
P = 0.0000<0.01). Likewise, the null hypothesis that the time-period fixed effects are jointly insignificant 
is rejected at the 1% significance level (41.7798; 18 degrees of freedom; P = 0.0012<0.01). These findings 
justify the extension of the model with fixed effects and time-period effects.

It should be stressed that if the country-level fixed effects term is correlated with the explanatory 
variables, but it is not controlled for within the model, then ordinary least squares (OLS) estimates 
will result in omitted variable bias (OVB). The pooled OLS estimates (column 2 in Table 5) for all  
the coefficients in the model are all highly statistically significant (p < 0.01), except for TECH variable, 
which arguably results from the OVB. Given the joint significance of the fixed and time-period effects 
from the LR test, we focus on the estimation results in column 5 in Table 5.

Table 5 Estimation results without spatial interaction effects

 Pooled OLS Spatial fixed effects Time-period fixed 
effects

Spatial and time-period 
fixed effects

lnRGDP 0.7598*** 0.4199*** 0.7857*** 0.5241***

(0.0000) (0.0023) (0.0000) (0.0001)

lnRGDP2 –0.0293*** –0.0095 –0.0300*** –0.0060

(0.0000) (0.1049) (0.0000) (0.2981)

lnTRO 0.2147*** 0.1406*** 0.2515*** 0.1486***

(0.0000) (0.0000) (0.0000) (0.0000)

lnURBAN 0.4014*** 0.1585 0.4256*** 0.2485**

(0.0000) (0.1811) (0.0000) (0.0339)

lnPOP 0.0718*** –0.1250 0.0752*** 0.0848

(0.0000) (0.1351) (0.0000) (0.3394)

lnTECH 0.0577 –0.0215 0.0530 –0.0417

(0.1559) (0.5124) (0.1894) (0.2093)

lnEI 1.1189*** 0.6014*** 1.1120*** 0.6357***

(0.0000) (0.0000) (0.0000) (0.0000)

Intercept –14.7637*** - - -

(0.0000) - - -
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Table 5   (continuation)

 Pooled OLS Spatial fixed effects Time-period fixed 
effects

Spatial and time-period 
fixed effects

R2 0.8871 0.5120 0.8888 0.3327

2 0.8862 0.5087 0.8881 0.3283

σ2 0.1173 0.0161 0.1142 0.0154

FE R2 0.9845 0.8899 0.9852

Log Likelihood –308.6256 584.9733 –297.2632 605.8631

LM spatial lag 64.6114*** 5.6159** 70.5684*** 3.3388*

(0.0000) (0.0180) (0.0000) (0.0680)

Robust LM spatial lag 6.1237** 14.5566*** 10.7820*** 60.3123***

(0.0130) (0.0000) (0.0010) (0.0000)

LM spatial error 153.7638*** 0.6179 139.7624*** 4.2464**

(0.0000) (0.4320) (0.0000) (0.0390)

Robust LM spatial error 95.2760*** 9.5585*** 79.9760*** 61.2198***

 (0.0000) (0.0020) (0.0000) (0.0000)

Notes: All variables are in natural logarithms. Numbers in the parentheses represent P values. * denotes p < 0.1. ** denotes p < 0.05.  
 *** denotes p < 0.01.
Source: Own estimates

It should be mentioned that all the non-spatial panel data models may suffer from misspecification 
if spatial dependence exists within the data. To test for the presence of spatial dependence, we begin 
by conducting the classical Lagrange Multiplier (LM) tests and their robustness to examine whether 
non-spatial panel data models ignore the spatial interaction effects of data or not (Anselin et al., 2008; 
Burridge, 1980). These tests' results are presented in the bottom part in Table 5. For the classical LM 
test (labeled “LM spatial lag”), the hypothesis of no spatially lagged dependent variable is strongly 
rejected at the 5% significance level or better for each of the specifications. In addition, and for the 
classical LM test (labeled “LM spatial error”), the hypothesis of no spatially autocorrelated error term 
is rejected for each of the specifications except for spatial fixed effects model (although the hypothesis 
of no spatially lagged dependent variable is rejected at the 1% significance level with this specification). 
Regarding the results of their robustness tests (Debarsy and Ertur, 2010), both hypotheses are rejected 
at the 5% significance level or better for each of the specifications. These findings imply the existence 
of spatial dependence among the panel data, which is consistent with the results of Moran's I index 
(see Table 4). Besides, they imply that a model specification with a spatially lagged dependent variable 
may be favored over a non-spatial panel model since we find consistent rejection of the hypothesis of 
no spatially lagged dependence. However, if the robust LM tests reject a non-spatial panel data model 
in favour of the SAR model or SEM model, one of these models must be carefully endorsed.

To further test which spatial panel data model specification is more appropriate, LeSage and Pace 
(2009), and Elhorst (2014b) recommend estimating the SDM, and then conducting both LR and Wald 
tests to verify whether it can be simplified to the SAR model or to the SEM (see also Burridge, 1981).

In this paper, we take a broader view and apply a Bayesian comparison approach. First, the Bayesian 
posterior model probabilities of the SDM and SDEM specifications are calculated, as well as the simpler 
SAR and SEM specifications, to identify which model specification best describes the data. Second, this 
analysis is repeated for several specifications of the neighbourhood matrices, to find the specification of 
W that best describes the data.
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For this empirical study, we use the following principles to construct twelve spatial weight matrices:
i.  Sharing a common land or maritime border implies the first-order binary contiguity matrix, 

W1. Maritime borders are based on the United Nations Convention on the Law of the Sea  
and additional sources further explaining this convention.

ii. The influence of a country might go beyond its immediate neighbors, as implied by the inverse 
distance matrix and the different cut-off points. Hence, we also consider a second order binary 
contiguity matrix, W2 = W1 × W1.

iii. A country may respond to the threat of even more distant countries, which is also the main 
reason that elements of the weight matrix within a certain radius of a country are not always 
set to 0. Therefore, we include a third-order binary contiguity matrix, W3 = W2 × W1.

iv. Except for the matrix based on the common border countries, the spatial weight matrix could be 
based on the calculation of distances using the spherical distance between geographic centroids 
of the countries. Therefore, we create a distance based spatial weight matrix, labeled as W4, 
using latitude and longitude coordinates and the Great Circle distance formula.7

v.  Inverse distance matrix based on the geographical distance between the centroids of every pair 
of countries. This matrix is labeled as W5.

vi. k-nearest neighbours matrix for k = 5, 6, 7, 8, 9, 10 and k = 20: it is a binary matrix 
of the k-nearest neighbour, where the weight wij = 1 if the country j is within the k-nearest 
neighbour of the country i and wij = 1 if otherwise. Therefore, we create seven additional spatial 
weight matrices, which are labeled as W6 for k = 5,  W7 for k = 6, W8 for k = 7, W9 for k = 8,  
W10 for k = 9, W11 for k = 10, and W12 for k = 20.

Finally, all the matrices are row normalized, which is standard in spatial econometrics literature 
when the elements of W have a binary (0/1) character.

7   Formally, the spherical distance (in kilometers) between the centroids of two countries is defined as follows:  
dij = 6 366.2 × Arccos{{cos|Yi – Yj| × cos Xi × cos Xj }+{sin Xi × sin Xj}}. Xi denotes the latitude of the centroid of country 
i, while Yi is the longitude of the centroid of country i.

Table 6 Simultaneous Bayesian comparison of dynamic spatial panel data model specifications and spatial 
weight matrices

W matrix Statistics SAR SDM SEM SDEM

W1 

Log marginal 538.7932 544.9566 541.0575 545.3341

Model probabilities 0.0008 0.4031 0.0082 0.5879

Posterior model probabilities 0.0000 0.0001 0.0000 0.0002

W2 

Log marginal 539.0006 549.7389 538.3043 549.4675

Model probabilities 0.0000 0.5674 0.0000 0.4326

Posterior model probabilities 0.0000 0.1690 0.0000 0.0129

W3 

Log marginal 538.8849 551.5624 539.2391 550.9163

Model probabilities 0.0000 0.6561 0.0000 0.3438

Posterior model probabilities 0.0000 0.1695 0.0000 0.0550

W4 

Log marginal 538.6144 539.9027 539.2829 539.8787

Model probabilities 0.0988 0.3584 0.1929 0.3499

Posterior model probabilities 0.0000 0.0000 0.0000 0.0000
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Table 6   (continuation)

W matrix Statistics SAR SDM SEM SDEM

W5

Log marginal –861.2964 –2 079.6651 –1 280.7416 –2 277.1929

Model probabilities 1.0000 0.0000 0.0000 0.0000

Posterior model probabilities 0.0000 0.0000 0.0000 0.0000

W6

Log marginal 538.7246 549.0644 538.7472 548.8082

Model probabilities 0.0000 0.5637 0.0000 0.4363

Posterior model probabilities 0.0086 0.0086 0.0000 0.0067

W7

Log marginal 539.3243 549.1309 538.6578 548.9059

Model probabilities 0.0000 0.5560 0.0000 0.4440

Posterior model probabilities 0.0000 0.0092 0.0000 0.0074

W8

Log marginal 540.2980 548.3807 538.6815 547.7051

Model probabilities 0.0002 0.6626 0.0000 0.3372

Posterior model probabilities 0.0000 0.0044 0.0000 0.0022

W9

Log marginal 540.7850 542.3514 538.6779 542.1279

Model probabilities 0.1027 0.4917 0.0125 0.3932

Posterior model probabilities 0.0000 0.0000 0.0000 0.0000

W10

Log marginal 539.9414 548.1252 538.6742 547.2536

Model probabilities 0.0002 0.7049 0.0001 0.2949

Posterior model probabilities 0.0000 0.0034 0.0000 0.0014

W11

Log marginal 539.6121 543.9585 538.6546 543.6084

Model probabilities 0.0075 0.5806 0.0029 0.4090

Posterior model probabilities 0.0000 0.0001 0.0000 0.0000

W12

Log marginal 538.8998 553.1569 540.5124 552.4275

Model probabilities 0.0000 0.6747 0.0000 0.3253

Posterior model probabilities 0.0000 0.1571 0.0000 0.2493

Notes: The highest posterior model probability in each row is highlighted in italics and the probabilities in each block sum to 1.
Source: Own estimates, based on LeSage (2014, 2015)

The results displayed in Table 6 show that both the dynamic SAR and SEM models are generally 
outperformed by either the dynamic SDM or dynamic SDEM specifications. In terms of the log 
marginal likelihood value, the worst-performing spatial neighbourhood matrix is the inverse distance 
matrix (W5 ). This matrix corroborates the point that decomposing market potential variables into 
their underlying components and considering the spatially lagged values of these components creates 
a much greater degree of empirical flexibility. If the neighbourhood matrix is specified as a p-order 
binary contiguity matrices for p = 2, 3, as either a distance neighbourhood matrix, or as k-nearest 
neighbours matrices for k = 5, 6, 7, 8, 9, 10, 20, then the Bayesian posterior model probabilities point 
to the dynamic SDM specification. Conversely, if the neighbourhood matrix is specified as a first-
order binary contiguity matrix, the Bayesian posterior model probabilities point to the dynamic 
SDEM specification. Alternatively, if neighbourhood matrix based on the inverse distance is adopted, 
the Bayesian posterior model probabilities provide further evidence in favour of the dynamic SAR 
specification.
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Table 6 also contains the Bayesian posterior model probabilities of the different spatial models 
(SAR, SDM, SEM, SDEM), in combination with the twelve proposed spatial weight matrices. These 
probabilities are calculated for dynamic versions of the spatial panel data model specifications. With 
these probabilities, we can simultaneously identify the most likely spatial econometric model and the 
most likely spatial weight matrix. Note that the probabilities are based on the log-marginal likelihood 
obtained by integrating out all parameters of the model over the entire parameter space on which they 
are defined. Furthermore, they are normalized such that the probabilities of all 48 combinations sum 
to 1. Following LeSage (2014, 2015), this normalization is based on the (non-linear) property that  
the Bayesian posterior model probability increases if the log-marginal likelihood value of one model  
or one W exceeds that of another model or W.

The results in Table 6 show that by considering the log-marginal values and Bayesian posterior model 
probabilities of the different specifications of the neighbourhood matrix, it is to be noted that the third-
order binary contiguity matrix, i.e., W3, and the SDM specification achieve the best performance of all 
48 combinations, in line with the initial robust LM test statistics for the nonspatial panel data model, 
which pointed to a SAR rather than a SEM. Accordingly, spatially lagged explanatory variables (WX)  
are necessary and should be included in the empirical model.

Furthermore, we decided to estimate the dynamic SDM specification using the bias-corrected maximum 
likelihood (ML) estimator developed by Elhorst (2010a, 2010b), and Lee and Yu (2010a).8 Note that  
the results without the bias correction are almost identical.9 Nevertheless, since the dynamic SDM model 
produces global country spillover effects, it is more likely to occur in combination with a sparse spatial 
weight matrix. Therefore, we determined the average number of neighbors of each country in the sample 
based on these two spatial weight matrices. It equals 6.16 for the W2 matrix, 9.46 for the W3 matrix,  
and 6.00 for the W4 matrix. Alternatively, the average number of adjacent neighbors based solely  
on land or maritime borders, i.e., W1, is 3.080. Based on the principle of sparsity, the W3 matrix thus seems  
to offer a better choice than W1 , W2 and W4 matrices.

The estimation results of the dynamic SDM with fixed and time-period effects specification, based  
on the W3 matrix, are reported in Table 7. Then, the results could serve to test whether the dynamic SDM 
might be simplified to a dynamic SAR model or to a dynamic SEM. The empirical findings reject both 
hypotheses and show that the dynamic SDM is preferred over the dynamic SAR model or the dynamic 
SEM. Otherwise, a necessary and sufficient condition for stationarity (stability), i.e., τ + δ + η = 0.7923 < 1,  
is also satisfied. This result is confirmed by the Wald test, across which the null hypothesis τ + δ + η = 1 
is strongly rejected at the 1% level of significance.

3.3 Analysis of estimation results
Since the diagnostic results suggest that the dynamic SDM with spatial and time-period fixed effects 
in Table 6 is the best fitting, we will limit the interpretation of coefficient estimates on it. It should  
be mentioned that our results are in line with some of the results of previous empirical studies. As shown 
in Table 7, the CO2 emissions strongly depend on their value in the previous year, or internal habit 
persistence (Korniotis, 2010); its coefficient amounts to 0.1595 and is highly significant at the 1% level. 

8   This bias correction is necessary since the dependent variables lagged in time and in both space and time on the right-
hand side of Formula (10) are correlated with the spatial fixed effects , which is the spatial counterpart of the Nickell bias,  
as shown by Yu et al. (2008), and Lee and Yu (2010a) for a dynamic spatial panel data model with and without time-
period fixed effects, respectively. In addition, the bias correction is needed because the demeaning procedure to wipe out  
the country and time-period fixed effects in a standard panel data model (Baltagi, 2005) produces a singularity among  
the transformed error terms if the model is augmented with a spatial lag in the dependent variable, causing the asymp-
totic distributions of the parameters not to be properly centered.

9   To save space, the estimation results of the dynamic SAR model without the bias correction are not reported in this paper, 
but they are available upon request.
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The significant positive estimated coefficient δ indicates that CO2 emissions in neighboring countries 
have a positive effect on local CO2 emissions. Besides, we find evidence of what Korniotis (2010) labels 
external habit persistence; the coefficient of the CO2 emissions observed in neighboring countries  
in the previous period is negative and statistically insignificant (–0.1060, p-value <0.01). Otherwise, 
countries respond to the CO2 emissions set in neighboring countries in the same year, such that  
the coefficient τ takes a positive value of 0.7388 and is highly significant (p-value <0.01), in line with  
the common feature of horizontal interaction among countries (Brueckner, 2003).

Focusing on the estimated coefficient of per capita real GDP, the elastic coefficient is 0.3319  
and statistically significant at the 1% level, which indicates that per capita real income has a negative effect 
on CO2 reduction. In addition, the estimated coefficients of the quadratic polynomial of real per capita 
GDP are highly significant indicating that the relationship between CO2 emissions and economic growth 
validate the traditional EKC hypothesis. Our results corroborate the view of other authors (e.g., You  
and Lv, 2018). The turning point of EKC for CO2 emissions in the dynamic SDM model is approximately  
$ 1 849 516.4465. While it is difficult to estimate the specific year when the turning point has been 
occurred, governments should abandon the pattern of treatment after pollution, develop the economy 
and cure the environmental issues at the same time. 

Concentrating on the estimated coefficient of trade openness, the elastic coefficient is 0.0509  
and significant at the 5% level. All else being equal, higher trade openness increases CO2 emissions. This 
result indicates that import and export trade have a negative effect on CO2 reduction. This result accepts 
the pollution haven hypothesis (PHH), or pollution haven effect, that polluting countries will relocate  
to jurisdictions with less stringent environmental regulations. Our results are not consistent with  
the views of Kearsley and Riddel (2010), Dong et al. (2010), and Kang et al. (2016).

The estimated coefficient on both population and technology are respectively positive and negative 
but statistically insignificant. Accordingly, we can ignore their impact on per capita CO2 emissions. 
Otherwise, the estimated coefficient on energy intensity is positive and highly significant. It indicates 
that a 1% increase on the total energy use per dollar of GDP will lead to a 0.2247 % increase in CO2 
emissions. This result implies that, all else equal, higher energy intensity, increased CO2 emissions  
in a given country. This result is consistent with the view of Shahbaz et al. (2015).

Finally, urbanization has a negative and significant effect on CO2 emissions in middle-income countries. 
This finding is not consistent with the views of You and Lv (2018). The elastic coefficient of urbanization  
is –0.2509, which means a 1% increase in urban population will result in a 0.2509% decrease in CO2 

emissions. In other words, urbanization has a positive impact on CO2 reduction in middle-income 
countries. This result indicates that middle-income countries considered in this paper promote low-
carbon urbanization progress and spread the application of green architecture technology with the topic 
of energy-saving and environmental protection to develop green city. Overall, the results of this study 
show that per capita real income, trade openness and energy intensity have significant positive effects 
on CO2 emissions, while urbanization has a significant negative effect on CO2 emissions. Considering 
these results, policymakers should realize an integrated policy with the aim at reducing CO2 emissions 
based on the determinants.

3.4 Direct and spillover effects
It is noteworthy that the coefficients of the dynamic SDM do not directly reflect the marginal effects 
of the corresponding explanatory variables on the dependent variable. Therefore, we report both the 
short-term and long-term impacts of the direct and spillover effects of the explanatory variables. Table 7 
displays both short and long-term estimates of the direct and spillover effects, derived from the parameter 
estimates using Formula (12). To draw inferences regarding the statistical significance of these effects, 
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the variation of 1 000 simulated parameter combinations is used, drawn from the variance-covariance 
matrix implied by the ML estimates. 

To get better fitting effects, we conduct a comparative analysis between the dynamic SDM with spatial 
and time-period fixed effects in Table 7 and non-spatial panel data model with two-way fixed effects  
in Table 5. The results indicate that most coefficients in non-spatial panel data model are larger than 
those in dynamic spatial panel data model. Two main reasons could explain this difference. The first one  
is mainly attributed to ignoring the spatial spillover effect of data. The second reason is due to the feedback 

Table 7 Results of the dynamic SDM with W = W3

Variable
Estimates

Short-term effects Long-term effects

Direct Spillover Direct Spillover

Coefficient p-value Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

W * ln(CO2)t: δ 0.1595*** 0.0000 - - - - - - - -

ln(CO2)t–1: τ 0.7388*** 0.0000 - - - - - - - -

W * ln(CO2)t–1: η –0.1060*** 0.0000 - - - - - - - -

ln(RGDP)t 0.3319*** 0.0017 0.1510 1.5542 –1.1431 –1.5933 0.8889 0.6858 –2.9471 –0.2954

ln(RGDP)t
2 –0.0115** 0.0133 –0.0055 –1.2788 0.0384 1.3563 –0.0315 –0.7068 0.1000 0.2700

ln(TRO)t 0.0509** 0.0165 0.0578*** 2.7957 0.0405 0.3912 0.1976 0.9516 0.0292 0.0442

ln(URBA)t –0.2509** 0.0222 –0.2259** –2.2668 0.1795 0.3599 –0.9323 –0.7773 0.2357 0.0390

ln(POP)t 0.0495 0.5680 0.0336 0.4904 –0.1329 –0.4346 0.1741 0.3284 –0.2097 –0.1015

ln(TECH)t –0.0068 0.6391 –0.0102 –0.4476 –0.0218 –0.1849 –0.0290 –0.1567 –0.0506 –0.0810

ln(EI)t 0.2247*** 0.0000 0.2499*** 8.1734 0.1548 0.9899 0.8927*** 2.9320 0.1922 0.1439

W * ln(RGDP)t 0.0719 0.2074 - - - - - - - -

W * ln(RGDP)t
2 –0.0023 0.3038 - - - - - - - -

W * ln(TRO)t –0.0129 0.1559 - - - - - - - -

W * ln(URBA)t 0.0246 0.4998 - - - - - - - -

W * ln(POP)t 0.0043 0.9443 - - - - - - - -

W * ln(TECH)t 0.0040 0.7317 - - - - - - - -

W * ln(EI)t –0.0530*** 0.0001

Observations 850 - - - - - - - - -

R2 0.9940 - - - - - - - - -

σ2 0.0081 - - - - - - - - -

Log-likelihood 943.4051 - - - - - - - - -

τ + δ + η 0.7923 - - - - - - - - -

Wald’s 
stability test:  
τ + δ + η = 1

59.2319*** 0.0000 - - - - - - - -

Wald test for 
dynamic SAR 59.4501*** 0.0000 - - - - - - - -

Wald test for 
dynamic SEM 233.9187*** 0.0000 - - - - - - - -

Notes: Country and time-period fixed effects are included. All variables are in natural logarithms. * denotes p < 0.1. ** denotes p < 0.05.  
 *** denotes p < 0.01.
Source: Own estimates
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effects that arise CO2 emissions of local country as a result of influencing the CO2 emissions of adjacent 
countries. In addition, one part of the feedback effects is from spatially lagged dependent variable, while 
the other part comes from the spatially lagged independent variables.

The coefficient estimates and short-term direct effects estimates derived from the parameter 
estimates using Formula (12) exhibit a plausible model structure. The direct effect of trade openness 
on CO2 emissions is positive and highly significant but lesser than 1. A one percentage point increase  
of the trade openness has an adverse effect on CO2 emissions, equal to 0.0578 percentage points.  
The impact of urbanization on a country’s CO2 emissions is negative and statistically significant  
at the 5% level. The direct effect of the energy intensity variable is positive and highly significant. This 
finding indicates that the CO2 emissions increases with a higher level of energy intensity. However, only 
the energy intensity variable exhibits significant long-term direct effects, but its magnitude almost a fourth.

Spatial spillover effects are local in nature and cannot be observed directly from the estimated coefficients 
reported in Table 5. Alternatively, we report the average values of the short and long-term spillover effects 
of Formula (12) in Table 7. The observed spillover effects in the short term or in the long term are not 
statistically significant. Therefore, the considered explanatory variables observed in neighboring countries 
do not have impacts on CO2 emissions.

3.5 Robustness checks
We report and discuss the results of two robustness checks, thereby focusing on short-term direct  
and country spillover effects. First, we re-estimate the dynamic SDM specification by replacing  
the spatial weight matrix by the second-order binary contiguity matrix W2, in line with the results in Table 6.  
The results reported in Table 8 show that changes are somewhat tiny for almost the independent variables 
whether in terms of statistical significance or magnitude, which further confirms the robustness of our 
main findings with model specification.

With our second robustness check, we follow You and Lv (2018) by exploring whether the results are 
changed when ruling out population explanatory variable and expressing the main variables as population 
weighted values. As acknowledged by You and Lv (2018), the rationale behind of this model is that  
it factors out the impacts of population on each of these variables. To do so, we also repeated  
the Bayesian comparison approach and selected simultaneously the best spatial econometric model as well  
as the best spatial weight matrix. The Bayesian comparison approach allows selecting simultaneously both 
the dynamic SDM model and W2 as the most likely spatial panel model and the most likely spatial weight 
matrix, respectively.10 The results from Table 9 further support the robustness of the previous findings.

CONCLUSIONS AND POLICY IMPLICATIONS
In this paper, we contributed to the existing literature by performing a more rigorous analysis  
of the relationship between economic growth and CO2 emissions in middle income countries. We firstly 
examined the EKC hypothesis for CO2 emissions at the country level using a dynamic SDM model 
with country and time period fixed effects. We also computed the short- and long-term spillover effects  
of explanatory variables for CO2 emissions in neighboring countries. Our results imply a positive, 
nonlinear relationship between economic growth and CO2 emissions. In other words, we found evidence 
for the EKC hypothesized, inverted U-shaped relationship between CO2 emissions and economic growth 
in middle-income countries. Moreover, trade openness and energy intensity were the major drivers  
of increasing CO2 emissions, while urbanization effect plays a crucial role in carbon reduction. The results 
were generally hold when robustness checks were performed. 

10   To save space, the results of the Bayesian comparison approach are not reported but are available upon request.
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Based on the empirical findings of this study, the following policy recommendations are put forward  
to further mitigate CO2 emissions in middle-income countries. First, the results of this paper showed 
evidence of an inverted U-shaped relationship between CO2 emissions and economic growth, suggesting 
that CO2 emissions increases at the early stages of development, but goes down at later stage of development. 
In this vein, the policies should be device in a way to reduce CO2 emissions at the later stages of economic 
development. The PHH stipulates that, when big industrialized countries seek to set up factories 
abroad, they will often search for the cheapest option in terms of resources and labor that offers the land  

Table 8 First robustness check: results of the dynamic SDM with W = W2

Variable
Estimates

Short-term effects Long-term effects

Direct Spillover Direct Spillover

Coefficient p-value Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

W * ln(CO2)t: δ 0.1753*** 0.0000 - - - - - - - -

ln(CO2)t–1: τ 0.7317*** 0.0000 - - - - - - - -

W * ln(CO2)t–1: η –0.1504*** 0.0000 - - - - - - - -

ln(RGDP)t 0.2185** 0.0170 0.2551** 2.2990 0.3468 0.3230 0.7127 0.1053 –1.9641 –0.0257

ln(RGDP)t
2 –0.0059 0.1788 –0.0086* –1.7435 –0.0234 –0.5390 –0.0142 –0.0571 0.1294 0.0463

ln(TRO)t 0.0451** 0.0253 0.0374 1.5106 –0.0712 –0.3850 0.1734 0.1384 0.0822 0.0059

ln(URBA)t –0.2229** 0.0142 –0.2325** –2.3990 –0.0597 –0.0779 –0.5854 –0.1701 3.2875 0.0861

ln(POP)t 0.0039 0.6216 –0.0232*** –0.2692 –0.2673 –0.6168 0.1450 0.0460 1.2978 0.0368

ln(TECH)t 0.0073 0.9561 –0.0023 –0.0831 –0.0829 –0.3538 0.0870 0.0561 0.8105 0.0458

ln(EI)t 0.2368*** 0.0000 0.2375*** 6.8674 –0.0041 –0.0145 0.6395 0.1838 –3.0480 –0.0764

W * ln(RGDP)t –0.0625 0.5022 - - - - - - - -

W * ln(RGDP)t
2 0.0027 0.4646 - - - - - - - -

W * ln(TRO)t –0.0033 0.5496 - - - - - - - -

W * ln(URBA)t 0.0466 0.5393 - - - - - - - -

W * ln(POP)t 0.0162 0.2813 - - - - - - - -

W * ln(TECH)t 0.0050 0.6336 - - - - - - - -

W * ln(EI)t –0.0417*** 0.0022 - - - - - - - -

Observations 850 - - - - - - - -

R2 0.9940 - - - - - - - -

σ2 0.0079 - - - - - - - -

Log-likelihood 953.2061 - - - - - - - -

τ + δ + η 0.7566 - - - - - - - -

Wald’s 
stability test:  
τ + δ + η = 1

88.0738*** 0.0000 - - - - - - - -

Wald test for 
dynamic SAR 66.4035*** 0.0000 - - - - - - - -

Wald test for 
dynamic SEM 280.4242*** 0.0000 - - - - - - - -

Notes: Country and time-period fixed effects are included. All variables are in natural logarithms. * denotes p < 0.1. ** denotes p < 0.05.  
 *** denotes p < 0.01.
Source: Own estimates
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and material access they require. This hypothesis surpasses the income per capita that noticeably increases 
CO2 emissions in the middle-income countries. The existence of EKC in the middle-income countries 
gives food-for-thought for the environmentalist to establish environmentally friendly and sustainable 
policies. Besides, the world is in fierce competition which can damage the natural flora of the world's 
resources that is considered the brazen growth for the economies. Thus, there is a strong need to set  
an optimistic target for economic growth that would easily be achieved without the cost of environmental 
degradation. Second, middle-income countries should decrease the amount of trade for lower pollution. 
However, this decision may deteriorate the economic situation of these countries. Although trade 
openness in conjunction with economic growth may cause environmental worsening, it is an important 
contributor to economic growth of several middle-income countries. Accordingly, policymakers should 
use trade openness to stimulate non-polluted industries by imposing taxes on polluted industries and 
creating incentives on non-polluted industries in order to encourage producers to shift toward cleaner 
and more environmentally friendly industries. Third, the positive impact of energy intensity on CO2 
emissions emphasizes the importance of re-structuring the energy use in middle-income countries such 
that increase in energy intensity does not necessarily translate into higher CO2 emissions. As an adequate 
solution for these countries, governments should promote renewable energy technologies. Finally, 
urban planners should use efficient urbanization to curb the CO2 emissions, especially for the countries 
with high density of population. Particularly, they should take thoughtful action on climate change  
by improving the public transportation systems and the energy efficiency of buildings and increasing  
the share of renewable energy sources in energy supplies.

Table 9 Second robustness check: results of the dynamic SDM with W = W2

Variable
Estimates

Short-term effects Long-term effects

Direct Spillover Direct Spillover

Coefficient p-value Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

W * ln(CO2)t: δ 0.1799*** 0.0000 - - - - - - - -

ln(CO2)t–1: τ 0.7311*** 0.0000 - - - - - - - -

W * ln(CO2)t–1: η –0.1579*** 0.0000 - - - - - - - -

ln(RGDP)t 0.2268*** 0.0082 0.2467** 2.4668 0.1996 0.3230 0.6230 0.1343 –3.5816 –0.0663

ln(RGDP)t
2 –0.0063* 0.0965 –0.0080* –1.8229 –0.0166 –0.5390 –0.0121 –0.0497 0.1664 0.0592

ln(TRO)t 0.0429** 0.0216 0.0400* 1.8849 –0.0304 –0.3850 0.2199 0.1146 0.9094 0.0328

ln(URBA)t –0.2023** 0.0218 –0.2488*** –2.9100 –0.4525 –0.0779 –0.2300 –0.0279 6.3815 0.0699

ln(POP)t 0.0089 0.9485 –0.0025 –0.1027 –0.0990 –0.6168 0.1867 0.0528 2.0634 0.0418

ln(TECH)t 0.2356*** 0.0000 0.2354*** 7.6816 –0.0037 –0.3538 0.6551 0.1722 –2.6891 –0.0610

ln(EI)t –0.0542 0.7221 - - - –0.0145 - - - -

W * ln(RGDP)t 0.0024 0.6364 - - - - - - - -

W * ln(RGDP)t
2 –0.0055 0.3288 - - - - - - - -

W * ln(TRO)t 0.0717** 0.0135 - - - - - - - -

W * ln(URBA)t 0.0068 0.5174 - - - - - - - -

W * ln(POP)t –0.0421*** 0.0017 - - - - - - - -

W * ln(TECH)t 850 - - - - - - - - -

W * ln(EI)t 0.9940 - - - - - - - - -
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Table 9   (continuation)

Variable
Estimates

Short-term effects Long-term effects

Direct Spillover Direct Spillover

Coefficient p-value Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

Observations 0.0080 - - - - - - - - -

R2 952.56153 - - - - - - - - -

σ2 0.7531 - - - - - - - - -

Log-likelihood 90.9290*** 0.0000 - - - - - - - -

τ + δ + η 13.3232** 0.0382 - - - - - - - -

Wald’s 
stability test:  
τ + δ + η = 1

14.9861** 0.0101 - - - - - - - -

Wald test for 
dynamic SAR 66.4035*** 0.0000 - - - - - - - -

Wald test for 
dynamic SEM 280.4242*** 0.0000 - - - - - - - -

Notes: Country and time-period fixed effects are included. All variables are in natural logarithms. * denotes p < 0.1. ** denotes p < 0.05.  
 *** denotes p < 0.01.
Source: Own estimates
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Table A1 Country list

Lower middle-income countries ($ 996 to $ 3 895) Upper middle-income countries ($ 3 896 to $ 12 055)

Country Name Country Code Country Name Country Code

Bangladesh BGD Algeria DZA

Bolivia BOL Armenia ARM

Cambodia KHM Azerbaijan AZE

Cameroon CMR Belarus BLR

Congo, Rep. COG Botswana BWA

Egypt, Arab Rep. EGY Brazil BRA

El Salvador SLV Bulgaria BGR

Honduras HND Colombia COL

India IND Costa Rica CRI

Indonesia IDN Dominican Republic DOM

Kyrgyz Republic KGZ Ecuador ECU

Moldova MDA Gabon GAB

Morocco MAR Guatemala GTM

Nicaragua NIC Iran, Islamic Rep. IRN

Nigeria NGA Jordan JOR

Pakistan PAK Kazakhstan KAZ

Philippines PHL Malaysia MYS

Sri Lanka LKA Mexico MEX

Sudan SDN Namibia NAM

Tunisia TUN Paraguay PRY

Ukraine UKR Peru PER

Uzbekistan UZB Romania ROU

Vietnam VNM Russian Federation RUS

South Africa ZAF

Thailand THA

Turkey TUR

Venezuela, RB VEN

Source: World Bank Country Classifications by income level (2018–2019)
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