
ANALYSES

122

PriceIndices – a New
R Package for Bilateral
and Multilateral Price Index
Calculations

1	 Department of Statistical Methods, University of Lodz, Rewolucji 1905 r. 41, 90-214 Lodz, Poland. E-mail: jacek.bialek@
uni.lodz.pl. Also Statistics Poland, Department of Trade and Services, Aleja Niepodległości 208, 00-925 Warsaw, Poland.
E-mail: j.bialek@stat.gov.pl.

2	 This paper was created as part of the project "Construction of an integrated retail price statistics system" (INSTATCENY),
financed by the National Center for Research and Development (1st edition of GOSPOSTRATEG, No. 1/382525/14/
NCBR/2018).

Abstract

The methodology of price indices dedicated to scanner data is broad, multifaceted, and still contains many open
problems. The main challenges include choosing the index formula and the time window width in multilateral
methods, as well as determining splicing or other data updating methods. Many NSIs experiment with scanner
data, their processing, classifying, matching, and finally using this type of data for CPI calculations. However,
these activities are limited, which is partly due to the lack of widely available software in this field. On the one
hand, R packages dedicated to price indices are available (e.g. IndexNumR or micEconIndex), on the other
hand, their functionality and the scope of implemented methods are quite limited. The article discusses a new
R package, i.e. PriceIndices, which is used to process scanner data and to calculate bilateral and multilateral price
indices. The assumptions for the construction of the package were such that it would serve both practitioners
and scientists through a multitude of methods and their parameterization. The main purpose of the article
is to present the utility of the package in the field of analyzing the dynamics of scanner prices. All obtained
results are based on the real scanner data set on milk obtained from one retailer chain in Poland and included
in the PriceIndices package.2

Keywords

Scanner data, bilateral indices, multilateral indices, elementary indices, chain indices,

superlative indices

JEL code

C43, E31

INTRODUCTION
Scanner data, alongside web-scraped data, have recently been a fairly popular alternative source
of information in Consumer Price Index (CPI) measurement. The availability of electronic sales data
for the calculation of the CPI has increased over the past 18 years. Scanner data mean transaction data

Jacek Białek i 1 | University of Lodz, Lodz, Poland

2021

123

101 (2)STATISTIKA

that specify turnover and numbers of items sold by GTIN or another bar code and can be obtained from
a wide variety of retailers (supermarkets, home electronics, internet shops, etc.). Scanner data contain
expenditure information at the item level, which makes it possible to use expenditure shares of items
as weights for calculating price indices at the lowest (elementary) level of data aggregation. They provide
some additional information about products (such as the following attributes: size, color, package quantity,
etc.) which may be useful in aggregating items into homogeneous groups.

Nevertheless, there are many challenges while using scanner data sets. The first group of challenges
is connected with data processing, i.e. row scanner data must be cleaned, classified, matched and (optionally)
filtered (Loon and Roels, 2018). This is a huge challenge – these stages usually require the use of advanced
techniques of multivariate statistics and machine-learning and/or text-mining methods. Sometimes
these stages force NSIs to build new IT systems and sometimes additional, separate modules are created
in R, Python, SAS, Mathematica or other environments. The second group of challenges concerns choosing
the optimal price index formula and the time window width in multilateral methods, determining
splicing or other data updating methods. Experiments in this area are somewhat limited, because most
statisticians do not have access to the appropriate software or do not have specialist knowledge in computer
science to create above-mentioned scripts. Although the methodology for scanner data and multilateral
indices is extensive and constantly evolving (see for instance Ivancic et al., 2011; Krsnich, 2014; Griffioen
and Bosch, 2016; de Haan et al., 2016; Chessa and Griffioen, 2016; Chessa, 2017; Chessa et al., 2017;
Diewert and Fox, 2017; von Auer, 2019; Mehrhoff, 2019; Białek and Bobel, 2019; Webster and Tarnow-
Mordi, 2019; Abe and Rao, 2019; Zhang et al., 2019), functionality of available packages for price index
calculations and the scope of implemented methods are still quite limited. For instance, in the case
of the popular IndexNumR package, the only multilateral price index formula which is available in this
package is the GEKS index. Moreover, extending the GEKS index is possible by using “only” three splicing
methods: movement splice, window splice and mean splice, i.e. the half splice is not available here, along
with the FBEW or FBMW methods (see Section 4). Another R package, micEconIndex, provides only
a small number of bilateral indices, i.e. the Paasche, the Laspeyres and the Fisher indices. There are some
other R packages (e.g. multilaterals or productivity) but still the list of available methods is quite poor and
these packages are not strictly dedicated to the scanner data case.

The article discusses a new R package, i.e. PriceIndices, which is used to process scanner data and
to calculate bilateral and multilateral price indices. The assumptions for the construction of the package
were such that it would serve both practitioners and scientists through a multitude of methods and their
parameterization. The main purpose of the article is to present the utility of the package in the field
of analyzing the dynamics of scanner prices. All obtained results are based on the real scanner data set
on milk obtained from one retailer chain in Poland and included in the PriceIndices package. Presentation
of this package is divided into the following sections: data processing, bilateral index calculations, multilateral
index calculations, extensions of multilateral indices, aggregation and index comparisons.

1 DATA PROCESSING
The released version of the Priceindices package can be installed from GitHub with the command: install_
github(“JacekBialek/PriceIndices”) or from CRAN: install.packages("PriceIndices"). This section discusses
the basic package functions for scanner data processing. Technical details are omitted since they can be
found in the package documentation. Please note that the package uses monthly unit values as prices
and, as a consequence, daily data on prices and quantities are aggregated to one month.

1.1 Data sets included in the Priceindices package
This package includes two data sets: artificial and real. The first one, dataMATCH, can be used
to demonstrate the data_matching function and it will be described later (see Section 1.4). The other

ANALYSES

124

one, milk, is a collection of scanner data on the sale of milk in one of Polish supermarkets in the period
from December 2018 to August 2020. It is a data frame with 6 columns and 4 281 rows. The used
variables (columns) are as follows: time – dates of transactions (Year-Month-Day); prices – prices of
sold products (PLN); quantities – quantities of sold products (liters); prodID – unique product codes
obtained after product matching (data set contains 67 different prodIDs); retID – unique codes identifying
outlets/retailer sale points (data set contains 5 different retIDs); description – descriptions of sold milk
products (data set contains 6 different product descriptions corresponding to subgroups of milk group).
The set milk represents a typical data frame used in the package for most calculations and is organized
as follows.

The milk data set contains transaction data on 6 milk subgroups: goat milk, powdered milk, full-fat
milk UHT, full-fat milk pasteurized, low-fat milk UHT, and low-fat milk pasteurized.

1.2 Data preparation
Data_preparing is a function for data preparation. This function returns a prepared data frame based
on the user’s data set. The resulting data frame is ready for further data processing (such as data selecting,
matching or filtering) and it is also ready for price index calculations (if only it contains required columns).
The resulting data frame is free from missing values, zero or negative prices and quantities. As a result,
the time column is set to be Date type (in format: ‘Year-Month-01’), columns of prices and quantities are
set to be numeric. If the description parameter is set to TRUE, then the description column is set to be
character type (otherwise it is deleted). Please note that the milk set is an already prepared dataset but
let us assume for a moment that we want to make sure that it does not contain missing values and we
do not need the description column for further calculations. For this purpose, we use the data_preparing
function as follows: data_preparing(milk, description=FALSE).

1.3 Product classification
Advanced machine-learning methods use for product classification so-called learning trials. However,
this requires the manual assigning of the appropriate COICOP group to product codes. When we have
meticulous and accurate product descriptions, we can alternatively classify products based on the words
or phrases appearing in their description. This is done by using the data_selecting function. The function
returns a subset of the user’s data set obtained by selection based on keywords and phrases defined
by parameters: include, must and exclude (see documentation). For instance, please use data_selecting(milk,
include=c(“milk”), must=c(“UHT”)) to obtain a subset of milk dataset limited to the UHT category (Table 2)
or data_selecting(milk, must=c(“milk”), exclude=c(“past”,”goat”)) to obtain a subset of milk dataset with
products which are not pasteurized and which are not goat products (Table 3).

Table 1 First six rows of the “milk” data set

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Time Prices Quantities prodID retID Description

2018-12-01 7.98 6.5 400032 1311 goat milk

2018-12-01 7.98 91.5 400032 2210 goat milk

2018-12-01 7.98 19.5 400032 6610 goat milk

2018-12-01 7.98 15.5 400032 7611 goat milk

2018-12-01 7.98 43. 400032 8910 goat milk

2019-01-01 7.98 4.5 400032 1311 goat milk

2021

125

101 (2)STATISTIKA

1.4 Product matching
If the user has a dataset with information about products sold but these products are not matched,
then the data_matching function can be used. In an optimal situation, an input data frame contains
the codeIN, codeOUT and description columns (see documentation) which in practice will contain
retailer codes, GTIN or SKU codes and product labels, respectively. The data_matching function
returns a data set defined in the first parameter (data) with an additional column (prodID). Two
products are treated as being matched if they have the same prodID value. The procedure of generating
the above-mentioned additional column depends on the set of available variables for matching.
In the most extreme case, when the onlydescription parameter is set to TRUE (its default value
is FALSE), two products are also matched if they have identical descriptions. Other 5 cases differ from
each other with regard to the set of considered variables, for instance, the algorithm for product matching
when both product codes (internal and external) are available differs from the algorithm when only
one of these codes is available (see the package documentation). If the matching process is to compare
product labels defined by the description column, then the Jaro-Winkler distance measure is used
(Jaro, 1989; Winkler, 1990) to compare each pair of character strings. For instance, let us suppose we
want to match products from the artificial data set (dataMATCH) included in the package (see Table 4).
Let us assume that products with two identical codes (codeIN and codeOUT) or one of thecodes identical
and an identical description are automatically matched. Products are also matched if they have one
of the codes identical and the Jaro-Winkler similarity measure, calculated for their descriptions, is
bigger than the fixed precision value, e.g. let us set its level to 0.98. Let us suppose also that we want to
match all products sold in the interval: December 2018–February 2019. Using the following command:

Table 2 First six rows of the UHT milk subset (*)

Note: (*) Available values of description: "full-fat milk UHT", "low-fat milk UHT".
Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Note: (*) Available values of description: "powdered milk", "full-fat milk UHT", "low-fat milk UHT".
Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Time Prices Quantities prodID retID Description

2018-12-01 2.99 113 60010 1311 full-fat milk UHT

2018-12-01 2.29 650 401350 1311 full-fat milk UHT

2018-12-01 2.68 304 402570 1311 full-fat milk UHT

2018-12-01 2.65 137 405419 1311 full-fat milk UHT

2018-12-01 2.99 560 60010 2210 full-fat milk UHT

2018-12-01 2.50 1914 401350 2210 full-fat milk UHT

Time Prices Quantities prodID retID Description

2018-12-01 19.58 10.5 403249 1311 powdered milk

2018-12-01 19.58 154.5 403249 2210 powdered milk

2018-12-01 19.58 88.5 403249 6610 powdered milk

2018-12-01 19.58 75.0 403249 7611 powdered milk

2018-12-01 19.58 18.0 403249 8910 powdered milk

2018-12-01 69.95 1.0 400033 2210 powdered milk

Table 3 First six rows of the not-pasteurized and not-goat milk subset (*)

ANALYSES

126

data_matching(dataMATCH, start=”2018-12”, end=”2019-02”, codeIN=TRUE, codeOUT=TRUE,
precision=.98, interval=TRUE), an additional column (prodID) will be added to the data frame
(Table 5). Now the data set is ready for further processing (e.g. data filtering) and/or price index
calculations.

Table 4 First six rows of the dataMATCH set before matching

Table 5 First six rows of the dataMATCH set after matching

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Time Prices Quantities codeIN codeOUT retID Description

2018-12-01 9.416371 309 1 1 1 product A

2019-01-01 9.881875 325 1 5 1 product A

2019-02-01 12.611826 327 1 1 1 product A

2018-12-01 9.598252 309 3 2 1 product A

2019-01-01 9.684900 325 3 2 1 product A

2019-02-01 9.358420 327 3 2 1 product A

1.5 Data filtering
The PriceIndices package includes the data_filtering function for data set reduction. This function
returns a filtered data set, i.e. a reduced user’s data frame with the same columns and rows limited
by a criterion defined by filters parameter (see documentation). If the set of filters is empty, then
the function returns the original data frame (defined by data parameter). On the other hand, if both filters
are chosen, i.e. filters=c(extremeprices, lowsales), then these filters work independently and a summary
result is returned. Please note that both variants of extremeprices filter can be chosen at the same time,
i.e. plimits and pquantiles, and they work also independently. For example, let us assume we consider
three filters for the milk data set: filter 1 is to reject 1% of the lowest and 1% of the highest price changes
comparing March 2019 to December 2018, filter 2 is to reject products with price ratio being less than
0.5 or bigger than 2 in the same time, filter 3 rejects the same products as filter2 rejects and also products
with relatively low sale in compared months. An additional filter 4 works for each pair of subsequent
months from the considered time interval and under the condition that filtering is done for each outlet
(retID) separately. The right commands for these filters and their impact on milk data set reduction (with
403 and 817 records when no filter is used in comparison of two months and the whole time interval
respectively) are presented in Table 6.

Time Prices Quantities codeIN codeOUT retID Description prodID

2018-12-01 9.416371 309 1 1 1 product A 24

2019-01-01 9.881875 325 1 5 1 product A 24

2019-02-01 12.611826 327 1 1 1 product A 24

2018-12-01 9.598252 309 3 2 1 product A 30

2019-01-01 9.684900 325 3 2 1 product A 30

2019-02-01 9.358420 327 3 2 1 product A 30

2021

127

101 (2)STATISTIKA

1.6 Additional product characteristics
The PriceIndices package includes 10 additional functions providing dataset characteristics. Please
note that if the interval parameter is set to FALSE, then these functions compare only periods defined
by period1 and period2 parameters (see documentation). Otherwise the whole time period between
period1 and period2 is considered. Table 7 summarizes these functions.

Table 6 The impact of filters 1–4 on data set reduction

Table 7 Package functions providing dataset characteristics

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Type of filter Command No. of records
after filtering

Filter 1 data_filtering(milk,start="2018-12",end="2019-
03",filters=c("extremeprices"),pquantiles=c(0.01,0.99)) 378

Filter 2 data_filtering(milk,start="2018-12",end="2019-
03",filters=c("extremeprices"),plimits=c(0.5,2)) 381

Filter 3 data_filtering(milk,start="2018-12",end="2019-
03",filters=c("extremeprices","lowsales"),plimits=c(0.5,2)) 180

Filter 4 data_filtering(milk,start="2018-12",end="2019-
03",filters=c("extremeprices"),pquantiles=c(0.01,0.99),interval=TRUE, retailers=TRUE) 773

Function Description

Available
The function returns all values from the indicated column (defined by the type parameter) which occur

at least once in one of the compared periods or in a given time interval. Possible values of the type parameter
are: retID, prodID, codeIN, codeOUT or description.

Matched
The function returns all values from the indicated column (defined by the type parameter) which occur

simultaneously in the compared periods or in a given time interval. Possible values of the type parameter are:
retID, prodID, codeIN, codeOUT or description.

matched_index

The function returns a ratio of values from the indicated column that occur simultaneously in the compared
periods or in a given time interval to all available values from the above-mentioned column (defined

by the type parameter) at the same time. Possible values of the type parameter are: retID, prodID, codeIN,
codeOUT or description. The returned value is from 0 to 1.

matched_fig

The function returns a data frame or a figure presenting the matched_index function calculated
for the column defined by the type parameter and for each month from the considered time interval.

The interval is set by the start and end parameters. The returned object (data frame or figure) depends
on the value of the figure parameter.

prices, quantities,
sales

Functions return prices (unit value), quantities and sales (respectively) of products with given IDs (prodID
column) and being sold in the time period indicated by the period parameter. The set parameter means

a set of unique product IDs to be used for determining prices of sold products. If the set is empty,
the function returns prices of all products being available in period.

sales_groups
The function returns values of sales of products from one or more datasets or the corresponding barplot

for these sales (if barplot is set to TRUE). Alternatively, it calculates the sale shares (if shares parameter is set
to TRUE).

pqcor

The function returns Pearson’s correlation coefficient for price and quantity of products with given IDs
(defined by the set parameter) and sold in period. If the set is empty, the function works for all products

being available in period. A figure parameter indicates whether the function returns a figure with
the correlation coefficient (TRUE) or just a correlation coefficient (FALSE).

pqcor_fig

The function returns Pearson’s correlation coefficients between price and quantity of products with given
IDs (defined by the set parameter) and sold in the time interval defined by the start and end parameters.

If the set is empty, the function works for all available products. Correlation coefficients are calculated for each
month separately. Results are presented in tabular or graphical form depending on the figure parameter.

ANALYSES

128

For instance, an example of the use of functions: matched_fig, sales_groups, pqcor, and pqcor_fig
(respectively) for the milk dataset is presented in Figure 1.

Figure 1 �Graphical results obtained by using functions: matched_fig, sales_groups, pqcor, and pqcor_fig
for the milk dataset (*)

a) The use of the matched_fig function

c) The use of the pqcor function

b) The use of the sales_groups function

d) The use of the pqcor_fig function

Note: �(*) �These figures are results of the following package commands: (a) matched_fig(milk, start="2018-12", end="2019-12", type="prodID");
(b) sales_groups(datasets=list(…), start="2019-04", end="2019-07", barplot=TRUE, shares=TRUE); c) pqcor(milk, period="2019-05",
figure=TRUE); d) pqcor_fig(milk, start="2018-12", end="2019-06").

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

2 BILATERAL PRICE INDEX CALCULATIONS
The PriceIndices package includes 6 functions for calculating bilateral, unweighted price indices
and 24 functions for calculating bilateral, weighted price indices (see Table 8).

co
rr

el
at

io
n

–0.200

–0.195

–0.190

–0.185

–0.180

fr
ac

tio
n

sh
ar

e
in

 s
al

es

0.9

0.8

0.6

0.8

0.4

0.2

0.0

ful-fat milk UHT goat milk powdered milk

groups
date

2019 01

2019 02

2019 03

2019 04

2019 05

2019 06

2019 07

2019 08

2019 9

2019 10

2019 11

2019 12

Pearson’s correlation coefficient = –0.2035

qu
an

tit
ie

s

date
prices

10 000

7 500

5 000

2 500

0

0 20 40 60

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2021

129

101 (2)STATISTIKA

To get the chain version of any price index formula presented in Table 8, we need to add “ch” before
its name, e.g. chfisher is a function for the chain Fisher index calculation (CPI Manual, 2004). Each
of these 60 functions returns a value (or vector of values) of the selected bilateral price index depending
on the interval parameter. If interval parameter is set to TRUE, the function returns a vector of price
index values without dates. To get information about both price index values and corresponding dates,
we should use general functions: price_index, price_indices or final_index (see Section 7). None
of these functions takes into account aggregating over outlets or product subgroups (to consider these
types of aggregating, we need to use the final_index function, see Section 8).

For instance, the following command: lloyd_moulton(milk,star t= ”2018-12”,end= ”2019
06”,sigma=0.7,interval=TRUE) provides values of the Lloyd-Moulton (CES) index for the month series
from December 2018 to June 2019, where the fixed base month is December 2018 and the elasticity
of the substitution parameter is set to 0.7. As a result, we obtain the following values: 1.0000000, 1.0155974,
1.0039722, 1.0032047, 1.0029064, 0.9943878, 1.0022053.

3 MULTILATERAL PRICE INDEX CALCULATIONS
This package includes 6 functions for calculating multilateral price indices and one additional, general
function (QU) which calculates the Quality Adjusted Unit Value index (Table 9).

Table 8 Bilateral price indices included in the PriceIndices package

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Unweighted price indices

Price index formula Package function

BMW (2007), Carli (1804), CSWD (1980, 1992), Dutot (1738),
Jevons (1865), Harmonic bmw, carli, cswd, dutot, jevons, harmonic

Weighted price indices

Price index formula Package function

AG Mean (2009), Banajree (1977), Bialek (2012; 2013),
Davies (1924), Drobisch (1871), Fisher (1922), Geary-Khamis

(1958, 1970), Geo-Laspeyres, Geo-Lowe, Geo-Paasche,
Geo-Young, Laspeyres (1871), Lehr (1885),

Lloyd-Moulton (1975, 1996), Lowe, Marshall-Edgeworth (1887),
Paasche (1874), Palgrave (1886), Sato-Vartia (1976), Stuvel (1957),

Törnqvist (1936), Vartia (1976), Walsh (1901), Young

agmean, banajree, bialek, davies, drobisch, fisher, geary-
khamis, geolaspeyres, geolowe, geopaasche, geoyoung,

laspeyres, lehr, lloyd_moulton, lowe, marshall_edgeworth,
paasche, palgrave, sato_vartia, stuvel, tornqvist, vartia, walsh,

young

Table 9 Multilateral price indices included in the PriceIndices package

Multilateral price index Package function

CCDI
(Caves, Christensen, Diewert, 1982) ccdi

GEKS, GEKS-J (GEKS based on the Jevons index),
GEKS-W (GEKS based on the Walsh index)

(Gini, 1931; Eltetö and Köves, 1964; Szulc, 1983)
geks, geksj,geksw

Geary-Khamis
(Geary, 1958; Khamis, 1970) gk

Quality Adjusted Unit Value
(de Haan, 2004) QU

Time Product Dummy (TPD)
(de Haan and Krsinich, 2017)	

tpd

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

ANALYSES

130

The above-mentioned 6 multilateral formulas consider the time window defined by the wstart
and window parameters, where window is a length of the time window (typically multilateral methods
are based on a 13-month time window). It measures the price dynamics by comparing the end period
to the start period (both start and end must be inside the considered time window). None of these
functions takes into account aggregating over outlets or product subgroups (to consider these aggregating,
we need to use the final_index function, see Section 8). For instance, the following command:
	� geks(milk,start=”2018-12”,end=”2019-12”,window=13) provides the value of the full-window

GEKS index comparing December, 2018 to December, 2012 , i.e. a 13-month time window is used.
As a result, we obtain 0.9876098.

4 EXTENSIONS OF MULTILATERAL INDICES
4.1 Splicing methods in the PriceIndices package
In the case of bilateral methods, a fixed base month (period) is used and the current period is shifted each
month. In monthly c{1,2,...,T}hained index methods, the base and the current month are both moved one
month. The problem with proceeding with the next month arises in the case of multilateral index methods.
Adding information from a new month may influence values of quality adjustment parameters and values
of corresponding multilateral indices. In the literature, we can meet the following window updating
methods (or splicing methods): a) movement splice method (MS), where a price index for the new month
is calculated by chaining the month-on-month index for the last month of the shifted window
to the index of the previous month (de Haan and van der Grient, 2011); b) window splice method (WS),
which calculates the price index for the new month by chaining the indices of the shifted window
to the index of T  months ago (Krsinich, 2014). c) half splice method (HS), where the splicing period
is chosen to be in the middle of the previous time window (de Haan, 2015); d) mean splice method (GMS),
which uses the geometric mean of all possible choices of splicing, i.e. all months {1,2,...,T} which are
included in the current window and the previous one (Diewert and Fox, 2017). All the above-mentioned
splicing methods are available in the PriceIndices package for any of the discussed multilateral indices
(see Section 5). In particular, the following functions can be used: ccdi_splice, geks_splice, geksj_splice,
geksw_splice, gk_splice and tpd_splice. For instance, let us calculate the extended Time Product Dummy
index by using the half splice method with a 10-month time window with the following command
(the resulting value is 1.002093):

tpd_splice(milk,start=”2018-12”,end=”2020-02”,window=10,splice=”half”).

4.2. Other extending methods in the PriceIndices package
Chessa (2016) proposed a method without using a monthly rolling window. Instead, it uses a time window
with a fixed base month every year (December). The window is enlarged every month with one month
(Fixed Base Monthly Expanding Window – FBEW). Lamboray (2017) proposed a mix of the FBEW
method and the movement splice. His approach uses a rolling window where the last month of the window
is compared to the previous December month. This December plays the role of fixed base, as in the FBEW
method. This method is called the Fixed Base Moving Window method (FBMW). Both the FBEW
and the FBMW methods are available in the package, i.e. to use them for any multilateral price index,
we need to add “_fbew” or “_fbmw” to the corresponding index function. For instance, let us calculate
the extended TPD index by using the FBEW method using the following command:

tpd_fbew(milk, start=”2018-12”, end=”2020-02”). As a result, we obtain: 0.9977962.

Please note that December 2019 is the chain-linking month here and, following Diewert (2004),
the Weighted Least Squares (WLS) method with expenditure shares as weights is used for estimation
while calculating the TPD index.

2021

131

101 (2)STATISTIKA

5 GENERAL FUNCTIONS FOR PRICE INDEX CALCULATIONS
This package includes 3 general functions for price index calculation. These functions provide a value
or values (depending on the interval parameter) of the selected price index formula or formulas.
If the interval parameter is set to TRUE, then it returns a data frame with two columns: dates and index
values. The first two general functions are described as below, the third and the most general function,
i.e. final_index, is discussed in Section 8:

 price_index function.

This function returns a value or values of the selected price index. The formula parameter is a character
string indicating the price index formula that is to be calculated. If the selected price index formula
needs some additional information, it should be defined by additional parameters: window and splice
(connected with multilateral indices), base (adequate for the Young and Lowe indices) or sigma (for
the Lloyd-Moulton or AG mean indices). Table 10 presents an example of the use of the price_index
function which runs the multilateral Geary-Khamis method for the milk dataset, i.e.

price_index(milk,start=”2018-12”,end=”2019-12”,formula=”gk”,interval=TRUE).

 price_index function.

This is an extended version of the price_index function because it allows us to compare many price
index formulas by using one command. The general character of this function means that, for instance,
one command may calculate two CES indices for two different values of the sigma parameter (the elasticity
of substitution) or we can select several splice indices and calculate them by using different window
lengths and different splicing methods. Please note that this function is not the most general
in the package, i.e. all selected price indices are calculated for the same data set defined by the data
parameter and the aggregation over subgroups or outlets is not taken into consideration here (to consider
it, the final_index function should be used – see Section 8). Table 11 presents an example of the use
of the price_indices function (for the milk dataset) which runs the Jevons index, the chain Fisher index,
the AG mean index with the elasticity of substitution parameter sigma=0.5, the full-window GEKS
and CCDI indices and the splicing TPD index, i.e. the TPD index extended by using the movement splice
method and a 10-month time window, i.e.

Source: �PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Table 10 �Results of the use of the price_index function in the PriceIndices package

Date gk

2018-12 1.0000000

2019-01 1.0066548

2019-02 1.0008807

2019-03 0.9817312

2019-04 0.9955483

2019-05 0.9918563

2019-06 0.9923588

2019-07 0.9886830

2019-08 1.0001154

2019-09 0.9940940

2019-10 0.9793358

2019-11 0.9779071

2019-12 0.9895014

ANALYSES

132

price_indices(milk,start=”2018-12”,end=”2019-12”,

lateral=c(“jevons”,”chfisher”),cesindex=c(“agmean”),sigma=c(0.5),

fbmulti=c(“geks”, “ccdi”),fbwindow=c(13,13),splicemulti=c(“tpd_splice”),

splicewindow=c(10),splice=c(“movement”), interval=TRUE).

Table 11 Results of the use of the price_indices function in the PriceIndices package

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

Date Jevons Chain Fisher AG Mean GEKS CCDI Splicing TPD

2018-12 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

2019-01 1.0227271 1.0021874 1.0161907 1.0020440 1.0018258 1.0034052

2019-02 1.0306252 1.0004589 1.0041815 1.0001378 0.9998011 0.9997846

2019-03 1.0361275 0.9861511 1.0040160 0.9837980 0.9839374 0.9830298

2019-04 1.0076198 0.9943142 1.0033451 0.9935624 0.9931984 0.9949289

2019-05 1.0403077 0.9914703 0.9946718 0.9898290 0.9897645 0.9921140

2019-06 0.9850525 0.9897306 1.0027552 0.9889244 0.9887816 0.9907993

2019-07 1.0053768 0.9875189 1.0034281 0.9861619 0.9863439 0.9860539

2019-08 1.0034188 0.9981165 1.0094286 0.9980918 0.9978275 0.9994174

2019-09 1.0181678 0.9968423 1.0085949 0.9951837 0.9951218 0.9944681

2019-10 1.0248130 0.9784270 0.9838821 0.9774534 0.9771381 0.9789089

2019-11 1.0088363 0.9770267 1.0095095 0.9804598 0.9814365 0.9812340

2019-12 1.0255585 0.9873297 1.0000443 0.9876098 0.9875563 0.9901864

6 FINAL INDEX – AGGREGATION OVER SUBGROUPS AND/OR OUTLETS
All previously presented functions for price index calculation do not take into consideration aggregation
over subgroups or outlets. The most general package function, i.e. the final_index, returns a value
or values of the selected price index taking into consideration aggregation over product subgroups
and/or over outlets (retailer sale points defined in retID column). If this second option is selected, then
for each outlet, i.e. each retID code, the set of considered prodID codes is limited to those codes which
are available simultaneously in all considered months. To be more precise: if both types of aggregation
are selected, then for each subgroup of products and for each outlet (point of sale) price indices are
calculated separately and then aggregated (according to the aggregation methods indicated) to the form
of the final price index. If the interval parameter is set to TRUE, then it returns a data frame with two
columns: dates and final index values (after optional aggregating). The datasets parameter defines
the user’s list of data frames with subgroups of sold products. The formula parameter is a character
string indicating the price index formula that is to be calculated. If the selected price index formula
needs some additional information, it should be defined by additional parameters: window and splice
(connected with multilateral indices), base (adequate for the Young and Lowe indices) or sigma (for
the Lloyd-Moulton or AG mean indices). The aggrret parameter is a character string indicating the formula
for aggregation over outlets. Available options are: none, laspeyres, paasche, geolaspeyres, geopaasche,
fisher, tornqvist, arithmetic, and geometric. The first option means that there is no aggregating over
outlets. The last two options mean unweighted methods of aggregating, i.e. the arithmetic or geometric

2021

133

101 (2)STATISTIKA

Table 12 The final chain Fisher index calculated for milk and with aggregation over subgroups and outlets

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

mean is used. Similarly, the aggrsets parameter is a character string indicating the formula for aggregation
over product subgroups with identical options as previously. To demonstrate the use of the final_index
function, let us define four subgroups of milk:

g1< -dplyr::filter(milk, milk$description==”powdered milk”),

g2< -dplyr::filter(milk, milk$description==”full-fat milk UHT”),

g3< -dplyr::filter(milk, milk$description==”low-fat milk UHT”),

g4< -dplyr::filter(milk, milk$description==”goat milk”).

Now, for the fixed time interval: December 2018–May 2019 using the milk dataset, let us calculate
the (final) chain Fisher price index (the fixed base month is December 2018) taking into consideration
the Laspeyres aggregation over subgroups g1, g2, g3, g4 and the Törnqvist aggregation over outlets.
The appropriate package command is as follows:

final_index(datasets=list(g1,g2,g3,g4), start=”2018-12”, end=”2019-05”,

formula=”chfisher”,aggrsets=”laspeyres”,aggrret=”tornqvist”,interval=TRUE),

and resulting final price index values are presented in Table 12.

Date Chain Fisher

2018-12 1.0000000

2019-01 1.0021740

2019-02 1.0077480

2019-03 1.0129532

2019-04 1.0089259

2019-05 0.9960455

7 GRAPHICAL COMPARISON OF PRICE INDEX RESULTS
This package includes 2 functions for simple graphical comparison of price indices. The first one,
i.e. compare_indices, is based on the syntax of the price_indices function, and thus it allows us
to compare price indices calculated on the same data set. This function calculates selected bilateral
or/and multilateral price indices and returns a figure with plots of these indices (together with dates
on the X-axis and the corresponding legend). The function does not take into account aggregating
over outlets or product subgroups. For instance, let us compare the price dynamics for the milk dataset
for the time interval: December 2018–December 2019, calculated by using two price index formulas:
the chain Dutot index and the full-window TPD index. The above-mentioned comparison can be made
by the following command:

compare_indices(milk,start=”2018-12”,end=”2019-12”,

bilateral=c(“chdutot”),fbmulti=c(“tpd”),fbwindow=c(13),

namebilateral=c(“Chain Dutot”), namefbmulti=c(“Full TPD”)),

and its result is presented in Figure 2.

ANALYSES

134

The second function, i.e. compare_final_indices, has a general character since its first argument
is a list of data frames which contain results obtained by using the price_index or final_index functions.
To be more precise: the finalindices parameter is a list of data frames with previously calculated price
indices. Each data frame must consist of two columns, i.e. the first column must include dates limited
to the year and month and the second column must indicate price index values for the corresponding
dates. The above-mentioned single data frame may be created manually in the previous step or it may
be a result of the following functions: price_index or final_index. All considered data frames must have
an identical number of rows. The names parameter is a vector of character strings describing names
of presented indices. For instance, let us compare the impact of the aggregating over outlets and subgroups
on the price index results (e.g. the Laspeyres formula is the assumed aggregating method). For this purpose,
let us calculate the full-window GEKS index in two cases: case1 without the above-mentioned aggregation
and case2 which considers that aggregation. We use the milk dataset and the yearly time interval:

case1<-price_index(milk, start=”2018-12”,end=”2019-12”,formula=”geks”, interval=TRUE),

case2<-final_index(datasets=list(milk), start=”2018-12”, end=”2019-12”, formula=”geks”,
aggrsets=”laspeyres”, aggrret = “laspeyres”, interval=TRUE),

compare_final_indices(finalindices=list(case1, case2),

names=c(“GEKS without aggregation”, ”GEKS with aggregation”)).

The results of the above-mentioned comparison are presented in Figure 3. Differences between
the calculated GEKS indices are negligible in the case of milk.

Figure 2 An example of the use of the compare_indices function

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2019 07

2019 08

2019 09

2019 10

2019 11

2019 12

1.00

0.95

date

pr
ic

e
in

de
x

va
lu

e

2021

135

101 (2)STATISTIKA

8 AN EXAMPLE OF AN EMPIRICAL STUDY USING THE PRICEINDICES PACKAGE
This section examines the influence of the choice of the data filter type on the final price index result.
Discussion about whether and what types of data filters to use for scanner data is ongoing in the literature.
As a rule, scanner data indices are calculated using a dynamic approach and most countries use
the monthly chained Jevons index. This method is commonly named the dynamic method (Eurostat,
2017). The dynamic basket is determined using turnover figures of individual products in two adjacent
months, i.e. the product is included in the sample if its turnover is above a fixed threshold being determined
by the number of products in the considered product group. In the literature (Van Loon and Roels, 2018),
we can meet the following condition for the above-mentioned rule which indicates whether the i-th
product is taken into consideration while comparing months t –1 and t:

s t –1
i i

t
1

n> λ
+ s

2
,� (1)

where s τi denotes the expenditure share of the i-th product at time τ, n is the number of considered
products and λ is a fixed parameter (as a rule 1.25). We will call this kind of data filter the low sale filter.
Supporters of using filters also assume that products that show extreme pricing changes from one month
to another should be also excluded from the sample (extreme price filter). The list of possible data filters
is longer, e.g. Statistics Belgium implements a filter for dump prices (van Loon and Roels, 2018). Filtering
products is one thing and the decision to proceed with them is another. One possible option
is the imputation of prices being flagged by filters but this raises questions about how to impute them.
Another option is to remove flagged products from the sample if it does not change the sample size critically.
This section examines the impact of the use of low sale filter and extreme price filter on price index values
in the latter option. In the empirical illustration, we use the scanner data set (milk.RData) from one
of retail chains in Poland, i.e. monthly data from 4 outlets on low-fat UHT milk (COICOP: 01142)

Figure 3 An example of the use of the compare_final_indices function

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2019 07

2019 08

2019 09

2019 10

2019 11

2019 12

1.000

0.995

0.990

0.985

0.980

pr
ic

e
in

de
x

va
lu

e

date

ANALYSES

136

sold during the period: Dec. 2018–Dec. 2019. We consider the low sale filter with λ = 1.25 (filter1)
and the extreme price filter with thresholds for the minimum and maximum price change set to 50%
and 200% (filter2). We use another variant of the extreme price filter, namely the filter which rolls
out products with price changes (in compared months) being smaller and bigger than the 1th and 99th
quantile of all observed price changes (filter3). We investigate the impact of the above-mentioned filters
on the final price index results where the considered final index formulas are: the chain Jevons, the chain
Fisher, the full-window GEKS and the full-window TPD indices. While calculating the final index,
we consider aggregation over outlets, i.e. the aggregation is done by using the Törnqvist formula. Please
note that filtering is done for each outlet separately, too. The whole procedure of the empirical study
can be found in the Appendix. The obtained results are presented in Figure 4.

Figure 4 �Impact of the low sale filter and extreme price filters on the final index value based on the example
of low-fat UHT milk sold during the period: Dec. 2018–Dec. 2019

The unweighted Jevons price index formula seems to be the most sensitive to the choice of the data
filter. The quantile filter, i.e. the filter 3, seems to influence considered price indices in the same way,
namely: as a rule, its use leads to the smallest values of final indices (e.g. the exception month is July,
2019). Presumably, this means that the distribution of monthly price changes is left-sided asymmetrical,

Source: PriceIndices R package <https://CRAN.R-project.org/package=PriceIndices>

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2019 07

2019 08

2019 09

2019 10

2019 11

2019 12

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2019 07

2019 08

2019 09

2019 10

2019 11

2019 12

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2019 07

2019 08

2019 09

2019 10

2019 11

2019 12

2019 01

2018 12

2019 02

2019 03

2019 05

2019 06

2019 04

2019 07

2019 08

2019 09

2019 10

2019 11

2019 12

1.05

1.05

1.02

1.02

0.99

0.99

0.98

1.04

1.00

0.98

1.050

1.025

1.000

0.975

0.950

2021

137

101 (2)STATISTIKA

i.e. products with larger monthly price changes than the average monthly price change dominate. In the
case of weighted formulas (the Fisher, GEKS, TPD), the impact of filter 2 on the price index value is
rather negligible. It can be easily justified since we do not observe any extreme price changes in the case of
milk observed during the considered time interval. Moreover, differences in price changes between milk
products with the biggest and the smallest sale values are probably small but not negligible, i.e. there is a
substantial impact of the filter 1 (green line) on the index value observed especially for the chain Jevons
and the full-window GEKS indices. In their case, the difference between the index values obtained with
and without filter 1 may exceed 2–3 p.p.

CONCLUSIONS AND FINAL REMARKS
The presented R package, i.e. PriceIndices package, was created for both official price statistics and
statisticians dealing with theory of price indices. The main assumptions when creating the package were
such that, firstly, it would cover the largest set of price indices and methods, and secondly, would be as
flexible as possible in controlling parameters related to price index formulas. The author of the package
hopes that this is the case: the package contains 104 useful functions for data processing, price index
calculations and price index comparisons, including 6 functions for calculating bilateral unweighted
price indices, 24 functions for calculating bilateral weighted price indices, 30 functions for calculating
weighted and unweighted chain price indices and 6 functions for calculating multilateral price indices.
Moreover, the package allows us to extend multilateral price indices by using known and updated
methods, i.e. splicing, the FBEW and FBMW methods. According to the best author’s knowledge, this
distinguishes the PriceIndices package from other packages dedicated to price indices. The package can
be useful at any stage of dealing with scanner data: it allows for preliminary classification of products
by labels, their matching and data filtering. Users (statisticians, NSIs, others) who have appropriate data
frames prepared in the package or earlier by themselves have a variety of price indices and methods at
their disposal, which makes it possible to conduct extensive experiments. The package, as part of the R
environment, is free of charge and has the ability to be expanded, also by users. The presented version
of the package (ver. 1.0) is its first installment (please use install.packages(“PriceIndices”) to install it) and
its author expresses the hope that users will contribute to its extension with further useful functions or
will improve its speed as well as reliability and find possible errors. The author of the package thanks in
advance all users for any comments. It is also planned to constantly expand the package with methods
and index formulas that will appear in the literature on an ongoing basis.

References

ABE, N. AND PRASADA RAO, D. S. Multilateral Sato-Vartia index for international comparison of prices and real
expenditures. Economic Letters, 2019, 183(C), pp. 1–4.

BANAJREE, K. S. On the factorial approach providing the true index of cost of living. Göttingen: Vandenhoeck und Ruprecht,
1977.

BIALEK, J. Some Remarks on the Original Price Index Inspired by the Notes of Peter von der Lippe. Econometrics
(Ekonometria), 2013, 3(41), pp. 40–54.

BIALEK, J. Simulation Study of an Original Price Index Formula. Communications in Statistics – Simulation and Computation,
2014, 43(2), pp. 285–297.

BIAŁEK, J. AND BOBEL, A. Comparison of Price Index Methods for CPI Measurement using Scanner Data. Paper presented
at the 16th Meeting of the Ottawa Group on Price Indices, Rio de Janeiro, Brazil, 2019.

CARLI, G. Del valore e della proporzione de’metalli monetati. In: Scrittori Classici Italiani di Economia Politica, 1804, 13,
pp. 297–336.

CARRUTHERS, A. G., SELLWOOD, D. J., WARD, P. W. Recent developments in the retail price index. Journal of the Royal
Statistical Society. Series D (The Statisticain), 1980, 29(1), pp. 1–32.

ANALYSES

138

CAVES, D. W., CHRISTENSEN, L. R., DIEWERT, W. E. Multilateral comparisons of output, input, and productivity using
superlative index numbers. Economic Journal, 1982, 92, pp. 73–86.

CHESSA, A. G. A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona, 1/2016, pp. 49–69.
CHESSA, A. G. AND GRIFFIOEN, R. Comparing Scanner Data and Web Scraped Data for Consumer Price Indices. Report,

Statistics Netherlands, 2016.
CHESSA, A. G. Comparisons of QU-GK Indices for Different Lengths of the Time Window and Updating Methods. Paper

prepared for the 2nd meeting on multilateral methods organised by Eurostat, Luxembourg, 14–15 March, 2017, Statistics
Netherlands.

CHESSA, A. G., VERBURG, J., WILLENBORG, L. A comparison of price index methods for scanner data. Paper presented
at the 15th Meeting of the Ottawa Group on Price Indices, Eltville am Rhein, Germany, 10–12 May, 2017.

Consumer Price Index Manual. Theory and practice. Geneva: ILO, IMF, OECD, UNECE, Eurostat, The World Bank,
International Labour Office (ILO), 2004.

DALEN, J. Recent developments in the retail price index. The Statistician, 1992, 29(1), pp. 1–32.
DAVIES, G. R. The Problem of a Standard Index Number Formula. Journal of the American Statistical Association, 1924,

19(146), pp. 180–188.
DIEWERT, W. E. On the Stochastic Approach to Linking the Regions in the ICP. Discussion Paper 04–16, Vancouver, Canada:

Department of Economics, University of British Columbia, 2004.
DIEWERT, W. E., FOX, K. J. Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion

paper 17–02, Vencouver, Canada: Vancouver School of Economics, University of British Columbia, 2017.
DE HAAN, J. Estimating Quality-Adjusted Unit Value Indexes: Evidence from Scanner Data. Paper presented at the SSHRC

International Conference on Index Number Theory and the Measurement of Prices and Productivity, 30 June–3 July,
2004, Vancouver, Canada.

DE HAAN, J. AND VAN DER GRIENT, H. A. Eliminating chain drift in price indexes based on scanner data. Journal
of Econometrics, 2011, 161, pp. 36–46.

DE HAAN, J. A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group
meeting, Tokyo, Japan, 2015.

DE HAAN, J., WILLENBORG, L., CHESSA, A. G. An Overview of Price Index Methods for Scanner Data. Paper presented
at the Meeting of the Group of Experts on Consumer Price Indices, 2–4 May, 2016, Geneva, Switzerland.

DE HAAN, J. AND KRSINICH, F. Time Dummy Hedonic and Quality-Adjusted Unit Value Indices: Do They Really Differ?
Review of Income and Wealth, 2017, 64(4), pp. 757–776.

DUTOT, C. F. Reflexions Politiques sur les Finances et le Commerce. The Hague: Les Freres Vaillant et Nicolas Prevost, 1738,
Vol. 1.

DROBISCH M. W. Ueber einige Einwürfe gegen die in diesen Jahrbüchern veröffentlichte neue Methode, die Veränderungen
der Waarenpreise und des Geldwerths zu berechten. Jahrbücher für Nationalökonomie und Statistik, 1871, Vol. 16,
pp. 416–427.

EDGEWORTH, F. Y. Measurement of Change in Value of Money I. The first Memorandum presented to the British
Association for the Advancement of Science, reprinted in Papers Relating to Political Economy, 1887, Vol. 1, New York,
Burt Franklin, p. 1925.

ELTETÖ, Ö. AND KÖVES, P. On a Problem of Index Number Computation Relating to International Comparisons
(in Hungarian). Statisztikai Szemle, 1964, 42, pp. 507–518.

EUROSTAT. Practical Guide for Processing Supermarket Scanner Data. In: Harmonised Index of Consumer Prices, 2017.
FISHER I. The Making of Index Numbers. Boston: Houghton Mifflin, 1922.
GEARY, R. G. A Note on Comparisons of Exchange Rates and Purchasing Power between Countries. Journal of the Royal

Statistical Society Series A, 1958, 121, pp. 97–99.
GINI, C. On the Circular Test of Index Numbers. Metron, 1931, 9(9), pp. 3–24.
GRIFFIOEN, A. R. AND BOSCH, O. On the Use of Internet Data for the Dutch CPI. Paper presented at the UNECE-ILO

Meeting of the Group of Experts on Consumer Price Indices, 2–4 May, 2016, Geneva, Switzerland.
IVANCIC, L., DIEWERT, W. E., FOX, K. J. Scanner Data, Time Aggregation and the Construction of Price Indices. Journal

of Econometrics, 2011, 161(1), pp. 24–35.
JEVONS, W. S. The variation of prices and the value of the currency since 1782. J. Statist. Soc. Lond., 1865, 28, pp. 294–320.
KHAMIS, S. H. A New System of Index Numbers for National and International Purposes. Journal of the Royal Statistical

Society Series A, 1972, 135, pp. 96–121.
KRSINICH, F. The FEWS Index: Fixed Effects with a Window Splice – Non-Revisable Quality-Adjusted Price Indices with

No Characteristic Information. Paper presented at the meeting of the group of experts on consumer price indices,
26–28 May, 2014, Geneva, Switzerland.

LAMBORAY, C. The Geary Khamis index and the Lehr index: how much do they differ? Paper presented at the 15th Ottawa
Group meeting, 10–12 May, 2017, Elville am Rhein, Germany.

2021

139

101 (2)STATISTIKA

LASPEYRES, E. Die Berechnung einer mittleren Waarenpreissteigerung, Jahrbücher für Nationalökonomie und Statistik,
1871, 16, pp. 296–314.

LENT, J. AND DORFMAN, A. H. Using a Weighted Average of Base Period Price Indexes to Approximate a Superlative
Index. Journal of Official Statistics, 2009, 25(1), pp. 139–149.

LEHR, J. Beiträge zur Statistik der Preise, insbesondere des Geldes und des Holzes. Frankfurt am Main: J. D. Sauerländer, 1885.
LLOYD, P. J. Substitution Effects and Biases in Non True Price Indices. The American Economic Review, 1975, 65, pp. 301–313.
MARSHALL, A. Remedies for Fluctuations of General Prices. Contemporary Review, 1887, 51, pp. 355–375.
MEHRHOFF, J. A linear approximation to the Jevons index. In: VON DER LIPPE. Index Theory and Price Statistics, Berlin,

Germany: Peter Lang, 2007.
MEHRHOFF, J. Towards a new paradigm for scanner data price indices: applying big data techniques to big data. Paper presented

at the 16th Meeting of the Ottawa Group on Price Indices, Rio de Janeiro, Brazil, 2019.
MOULTON, B. R. Constant Elasticity Cost-of-Living Index in Share-Relative Form. Washington DC: U. S. Bureau of Labour

Statistics, 1996.
PAASCHE, H. Über die Preisentwicklung der letzten Jahre nach den Hamburger Borsennotirungen. Jahrbücher für

Nationalökonomie und Statistik, 1874, 12, pp. 168–178.
PALGRAVE, R. H. I. Currency and Standard of Value in England, France and India and the Rates of Exchange Between these

Countries. Memorandum submitted to the Royal Commission on Depression of trade and Industry, Third Report, 1886,
Appendix B, pp. 312–390.

SATO, K. The Ideal Log-Change Index Number. The Review of Economics and Statistics, 1976, 58(2), pp. 223–228.
STUVEL, G. A New Index Number Formula. Econometrica, 1957, 25, pp. 123-131.
SZULC, B. Indices for Multiregional Comparisons (in Polish). Przegląd Statystyczny, 1964, 3, pp. 239–254.
TÖRNQVIST, L. The Bank of Finland’s Consumption Price Index. Bank of Finland Monthly Bulletin, 1936, 10, pp. 1–8.
VAN LOON, K. V. AND ROELS, D. Integrating big data in the Belgian CPI. Paper presented at the meeting of the group

of experts on consumer price indices, 8–9 May, 2018, Geneva, Switzerland.
VARTIA, Y. 0. Ideal Log-Change Index Numbers. Scandinavian Journal of Statistics, 1976, 3(3), pp. 121–126.
VON AUER, L. The Nature of Chain Drift. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices,

8–10 May, 2019, Rio de Janerio, Brasil.
WALSH, C. M. The Measurement of General Exchange Value. New York: The MacMillan Company, 1901.
WEBSTER, M. AND TARNOW-MORDI, R. C. Decomposing Multilateral Price Indexes into the Contribution of Individual

Commodities. Journal of Official Statistics, 2019, 35(2), pp. 461–486.
ZHANG, L., JOHANSEN, I., NYAGAARD, R. Tests for Price Indices in a Dynamic Item Universe. Journal of Official

Statistics, 2019, 35(3), pp. 683–697.

ANALYSES

140

APPENDIX

R procedure for the empirical study with the use of the PriceIndices package

library(“PriceIndices”)

library(“ggpubr”)

#time interval

t1<-”2018-12”

t2<-”2019-12”

#milk subgroup

data<-dplyr::filter(milk, milk$description==”low-fat milk UHT”)

#filters

filter1<-data_filtering(data, start=t1, end=t2, filters=c(“lowsales”),
lambda=1.25, interval=TRUE, retailers=TRUE)

filter2<-data_filtering(data, start=t1, end=t2, filters=c(“extremeprices”),
plimits=c(0.5,2), interval=TRUE, retailers=TRUE)

filter3<-data_filtering(data, start=t1, end=t2, filters=c(“extremeprices”),
pquantiles=c(0.01,0.99), interval=TRUE, retailers=TRUE)

#Chain Jevons

CHJ_no<-final_index(datasets=list(data),start=t1, end=t2, formula=”chjevons”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

CHJ_f1<-final_index(datasets=list(filter1),start=t1, end=t2,
formula=”chjevons”, aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

CHJ_f2<-final_index(datasets=list(filter2),start=t1, end=t2,
formula=”chjevons”, aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

CHJ_f3<-final_index(datasets=list(filter3),start=t1, end=t2,
formula=”chjevons”, aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

fig1<-compare_final_indices(finalindices=list(CHJ_no,CHJ_f1,CHJ_f2,CHJ_f3),
names=c(“without filtering”, “filter 1”, “filter 2”, “filter 3”))

fig1<-fig1+ggtitle(“Chain Jevons”)

#Chain Fisher

CHF_no<-final_index(datasets=list(data),start=t1, end=t2, formula=”chfisher”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

CHF_f1<-final_index(datasets=list(filter1),start=t1, end=t2,
formula=”chfisher”, aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

CHF_f2<-final_index(datasets=list(filter2),start=t1, end=t2,
formula=”chfisher”, aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

CHF_f3<-final_index(datasets=list(filter3),start=t1, end=t2,

2021

141

101 (2)STATISTIKA

formula=”chfisher”, aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

fig2<-compare_final_indices(finalindices=list(CHF_no,CHF_f1,CHF_f2,CHF_f3),
names=c(“without filtering”, “filter 1”, “filter 2”, “filter 3”))

fig2<-fig2+ggtitle(“Chain Fisher”)

#GEKS

G_no<-final_index(datasets=list(data),start=t1, end=t2, formula=”geks”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

G_f1<-final_index(datasets=list(filter1),start=t1,end=t2, formula=”geks”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

G_f2<-final_index(datasets=list(filter2),start=t1,end=t2, formula=”geks”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

G_f3<-final_index(datasets=list(filter3),start=t1,end=t2, formula=”geks”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

fig3<-compare_final_indices(finalindices=list(G_no,G_f1,G_f2,G_f3),
names=c(“without filtering”, “filter 1”, “filter 2”, “filter 3”))

fig3<-fig3+ggtitle(“Full GEKS”)

#TPD

TPD_no<-final_index(datasets=list(data),start=t1, end=t2, formula=”tpd”,

aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

TPD_f1<-final_index(datasets=list(filter1),start=t1, end=t2, formula=”tpd”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

TPD_f2<-final_index(datasets=list(filter2),start=t1, end=t2, formula=”tpd”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

TPD_f3<-final_index(datasets=list(filter3),start=t1, end=t2, formula=”tpd”,
aggrsets = “none”, aggrret = “tornqvist”, interval=TRUE)

fig4<-compare_final_indices(finalindices=list(TPD_no,TPD_f1,TPD_f2,TPD_f3),
names=c(“without filtering”, “filter 1”, “filter 2”, “filter 3”))

fig4<-fig4+ggtitle(“Full TPD”)

#results

figure <- ggarrange(fig1, fig2, fig3, fig4,

 common.legend = TRUE,

 legend=c(“bottom”),

 ncol = 2, nrow = 2)

figure
ggexport(figure, filename = “result.png”)

#end of procedure

