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INTRODUCTION   
Population censuses are a fundamental demographic 
and statistical task that have long been organised 

in almost every country in the world. Census 
programmes are undoubtedly evolving, but the 
basis remains the same: a census is a survey  

Jaroslav Kraus1)
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The 2011 Population and Housing Census in the Czech Republic was accompanied by a significant change  
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to a change in the characteristics of the file either in terms of statistics of the whole file (i.e. for all grids) or  
in terms of spatial statistics, which indicate the spatial distribution of the analysed phenomenon. Two possible solutions 
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of the population, houses, flats, and households.  
The last Population and Housing Census in the Czech 
Republic took place in 2011 and was conducted 
in conformity with Regulation No. 763/2008  
of the European Parliament and the Council of the 
European Union. Based on a proposal from the Czech 
government, the Parliament of the Czech Republic 
ordered a census by Act No. 296/2009 Coll.

Martin (Martin ,  2011) evaluated gridded 
population models using the 2001 Northern Ireland 
census. He noted that there is a growing interest in the 
use of gridded population models, which potentially 
offer the advantages of stability over time and ease  
of integration with non-population data sources. High-
resolution global gridded data for use in population 
studies were provided in (Lloyd et al., 2017). Recent 
years have seen substantial growth in openly available 
satellite and other geospatial data layers, which 
represents a range of metrics relevant to mapping 
the global human population at fine spatial scales. 
Such datasets are vital for measuring the impacts  
of population growth, monitoring change, and 
planning policy interventions. (Lloyd et al., 2019) 
mention the use of global spatio-temporally 
harmonised datasets to produce high-resolution 
gridded population distribution datasets. Multi-
temporal, globally consistent, high-resolution human 
population datasets have been used to produce 
consistent and comparable population distributions 
to help map sub-national heterogeneities in health, 
wealth, and resource access, and monitor change  
in these areas over time. Finally, (Doxsey-Whitfield  
et al., 2015) took advantage of the improved availability 
of census data to provide a first picture of the gridded 
population of the world.

Compared to past censuses, the 2011 Population 
and Housing Census introduced a relatively significant 
change in the procedure for preparing the census 
and in the actual course of the fieldwork, along 
with changes in how the data were processed and 
the outputs disseminated. Some methodological 
approaches have also changed and become more 
aligned with international recommendations (CZSO, 
2011; 2013). Although a number of changes have been 
relatively widely discussed in the literature, one type of 
output remains somewhat overlooked: census results 
in a grid network.

In 2012 and 2013, the Czech Republic participated 
in a project of the European Communities (Eurostat) 
called Representing Census Data in the European 
population grid (Geostat). The aim of the project 
was to create a prototype of the European population 
grid compiled from national data sets of the results  
of censuses held around 2010 (in the Czech Republic 
in 2011) in all participating and cooperating countries 
and to describe the methodology for generating and 
displaying these data in the grid.

Three different methods were used to calculate 
statistical (attribute) data in grids. Because of its 
high accuracy and the quality of its outputs, the 
‘aggregation method’ is the preferred approach.  
It is based on the assumption that georeferenced 
statistical microdata are widely available (provided 
with X, Y coordinates), with accuracy to the level of 
buildings and these data are then aggregated within 
individual grids. In the absence of such spatially 
localised statistical data, the values for individual 
squares are derived from the lowest territorial units for 
which the relevant statistical variables are still available 
(e.g. municipalities or census tracts); this method 
is called disaggregation. Finally, if georeferenced 
microdata are available for only a part of the studied 
area, then the ‘hybrid method’ is usually applied, 
which is based on a combination of the two previously 
described methods (Kraus et al., 2014).

Grids are regular polygon networks that divide 
the territory of a country into equally large territorial 
units, to which aggregate statistical data are assigned 
(Klauda, 2011). In the case of a census, these are 
squares with an edge of 1 km and aggregations of 
mean data on the population, although there is nothing 
to prevent the assignment of data on houses, flats,  
or households as well.

It is the regular identical shape and thus the 
identical size of all the cells that is one of the main 
advantages of grids, which facilitates their mutual 
comparability in space – for example, across states. 
Another advantage is long-term stability over time, 
which contrasts with frequent changes in the definition 
of administrative units. Networks of squares enable the 
presentation of statistical data in a very detailed spatial 
resolution, which brings the advantage of an easier and 
more accurate analysis of territorial structures (Kraus 
et al., 2014). However, each method has its advantages 
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and disadvantages. In the case of grids, it is mainly that 
they do not coincide with territorial administrative 
boundaries. This is, of course, solvable, but always 
only to a certain extent. The second disadvantage  
is that these are territorially small units, which are 
often minimally populated, and this is primarily  
an issue for the protection of individual data - which 
is associated with statistical disclosure control (SDC).

The research question addressed in this paper  
is whether data protection (perturbation methods) 
leads to a change in the characteristics of the file:

• either in terms of the statistics of the whole file 
(i.e. for all grids), or 

• in terms of spatial statistics, which indicate 
the spatial distribution of the analysed 
phenomenon.

The issue of SDC is relatively extensive and has 
been addressed by a number of authors. In this paper, 
the author often refers to the proceedings of (Domingo-
Ferrer et al., 2018), which contain documentation  
on this issue in relation to the census. A large amount 
of information, including legal aspects, can be found 
in (Hunderpool et al., 2012), including calculation 
procedures for frequency tables. An illustrative way 
of measuring SDC results, including other useful 
information, is contained in (Domingo-Ferrer  
et al., 2006). (Templ, 2017) has written a work that is 
devoted to methods and applications in R in the field 
of SDC. And (Thijs et al., 2021) have written a practical 
guide that also deals with applications in R. There is, 
therefore, sufficient information available for anyone 
to create own approach to the issue.

Nevertheless, in this paper, two possible solutions 
to the issue of grid data protection will be discussed. 
One comes from the Statistical Office of the European 
Communities (Eurostat) and the other from 
Cantabular, which is a product of the the Sensible 
Code Company (SCC) based in Belfast. SensibleCode 
was involved as a partner in the UK’s 2021 population 
census (Company, 2021). 

METHODS AND METHODOLOGY   

Statistical disclosure control (SDC) is a statistical 
field that has been developing dynamically in recent 
years and on which there is already enough good-
quality literature. There are many reasons for this 

development. Disclosure control thinking has to keep 
up with increases in computing power, developments 
in matching software, and the proliferation  
of public and private databases. Statistical offices need  
to find the right balance between the need to inform 
society as much as possible, on the one hand, and 
the need to safeguard the privacy of the respondents 
on the other (Hunderpool et al., 2012, p. xi). There 
are several reasons why statistical data protection 
should be respected. Above all, there are legal 
regulations that deal directly with the issue of SDC, 
such as Commission Regulation (EC) No. 831/2002 
(Eurostat, 2002) of 17 May 2002 implementing 
Council Regulation (EC) No. 322/97 (Eurostat, 1997)  
on Community Statistics concerning access 
to confidential data for scientific Purposes,  
or Commission Regulation (EC) No. 223/2009 of 
the European Parliament and Council of 11 March 
2009 on European statistics. However, there are also  
a number of other legally relevant documents that 
focus on this issue (Domingo-Ferrer et al., 2012,  
pp. 23–35).

There are several ways to address the issue of 
SDC: traditional methods include tabular data 
protection or the protection of the output of 
statistical analyses, and modern methods include 
microdata protection. This paper is devoted to the 
latter, and specifically with respect to census output 
in a grid network. If you work with microdata, 
i.e. with individual records, then the methods for 
protecting these data can be divided into several 
groups. The purpose of all these efforts is to strike 
a balance between the risk of publishing detailed 
information and the usefulness of publishing that 
information.

When assessing SDC methods and their parameters 
for statistical outputs, an iterative process is carried 
out. For each method and its parameters, quantitative 
disclosure risk and information loss measures 
are calculated. These points can then be plotted  
on a Disclosure Risk - Data Utility (R-U) Confidentiality 
Map. The optimal SDC method to choose is the one 
that reduces the disclosure risk to tolerable risk 
thresholds while ensuring high quality data that are 
fit for purpose (Shlomo et al., 2006, p. 69).

In the case of microdata, it is possible to define 
the principles for managing the confidentiality  
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of microdata. There is EU legislation that specifically 

address this issue of confidentiality: Regulation 
1588/90 or Regulation 322/97. For statistical disclosure 
control in the European Union, the following two laws 
are currently of importance: Commission Regulation 
(EC) No. 831/2002 and 322/97 on Community 
Statistics, concerning access to confidential data for 
scientific purposes.

The purpose of SDC for microdata is to prevent 
confidential information from being linked  
to specific respondents when a microdata file is being 
released. More formally, we can say that, given an 
original microdata set V, the goal of SDC is to release  
a protected microdata set V’ in such a way that:

• the disclosure risk (i.e. the risk that a user or an 
intruder can use V’ to determine confidential 
variables on a specific individual among those 
in V) is low;

• user analyses (regressions, means, etc.) on V 
and V’ yield the same or at least similar results 
(Hunderpool et al., 2012, p.23).

• There are two methods to create a protected 
microdata set V’:

• either by masking original data, i.e. generating 
a modified version V’ of the original microdata 
set V;

• or by generating synthetic data V’ that preserve 
some of the statistical properties of the original 
data V.

• Regarding masking methods, these can in turn 
be divided into two categories depending on 
their effect on the original data:

• Non-perturbative masking: Non-perturbative 
methods do not distort data; rather, they 
produce partial suppressions or reductions of 
detail in the original data set. Global recording, 
local suppression and sampling are examples of 
non-perturbative masking.

• Perturbative masking: The microdata set  
is distorted before publication. In this way, 
unique combinations of scores in the original 
data set may disappear and new unique 
combinations may appear in the perturbed data 
set; such confusion is beneficial for preserving 
statistical confidentiality. The perturbation 
method used should be such that statistics 
computed on the perturbed data set do not 
differ significantly from the statistics that would 
be obtained on the original data set (Hunderpool 
et al., 2012, p. 33). The whole process of work 
also depends on whether they are continuous 
or discontinuous variables.

Random noise is defined by noise probability 
distributions and by a mechanism to draw from the 
noise distributions. In its basic form, random noise  
is generated independently and identically distributed 
with a mean of zero and a positive variance, which 
is determined by the statistical agency. A zero 
mean ensures that no bias is introduced into the 
original variable. The random noise is then added 
to the original variable. Adding random noise  
to a continuous variable will not alter the mean value 
of the variable for large datasets but will introduce 
more variance depending on the variance parameter 
used to generate the noise (Shlomo, 2010, p. 3).

Measuring information loss and utility for the 
SDC decision problem is a more subjective matter. 
It depends on the users, the purpose of the data, the 
required statistical analysis, and the type and format 
of the statistical data. Therefore, it is useful to have  
a wide range of information loss measures with which 
to assess the impact of SDC methods on statistical 
data. These measures include:

• effects on the bias and variance of point 
estimates and other sufficient statistics,

Figure 1  R-U confidentiality map

Source: Hunderpool et al., 2012, p. 5.
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• distortions to the rankings of variables and 
univariate and joint distributions between 
variables,

• changes to model parameters and goodness of 
fit criteria when carrying out statistical analysis 
(Shlomo et al., 2006, p. 69).

When assessing SDC methods and their parameters 
for statistical outputs, an iterative process is carried 
out. For each method and its parameters, quantitative 
disclosure risk and information loss measures are 
calculated. An optimal SDC method is chosen, which 
reduces the disclosure risk to tolerable risk thresholds, 
while ensuring high quality data that are fit for purpose 
(Shlomo et al., 2006, p. 69).

Information loss measures can be classed into 
two research areas: information loss measures 
for use by data suppliers so that they can make 
informed decisions about optimal SDC methods and 
information loss measures aimed at users so that 
they can make adjustments to the statistical analysis  
on modified disclosure controlled statistical data 
(Shlomo et al., 2006, p. 69).

DATA PROTECTION SOLUTIONS  

Eurostat's solution is described in detail in (Eurostat, 
2017). The relationship to census grid data is also 
mentioned here. This new geographical variable  
(e.g. grid id) also needs to be considered from the 
viewpoint of statistical disclosure control, especially 
with regard to already existing and used geographical 
variables. Grid data are particularly useful because 
they are easy to interpret. 

Many grid data will presumably contain zero 
frequencies. A statistical disclosure control solution 
cannot alter the spatial distribution of grid data too 
much. This means that if a few grid cells contain non-
zero frequencies in a certain geographical area, they 
should not be changed very much, and not too many 
zero grid frequencies should be changed to positive 
frequencies.

The disclosure risk of statistical data can  
be quantified using disclosure risk measures. 
Disclosure risk measures make notions and concepts 
operational and help to make decisions about the data 
release. If the disclosure risk is low, a statistical institute 
might release the data without any change. However,  

if the disclosure risk is unacceptably high, the statistical 
institute has to protect the data carefully (Eurostat, 
2015, chap. 3.1. I, p. 3). The aim is both to protect grids 
that contain low frequencies of absolute numbers, and 
to protect low frequencies of attribute values, such  
as gender, age, marital status, etc. Eurostat's solution 
is based on the pre-tabular method of targeted record 
swapping and the post-tabular random noise method. 
Record swapping is a pre-tabular SDC method, and 
as such, it is applied to microdata. Some pairs of 
records are selected in the microdata set. The paired 
individuals/households are matched on some variables 
in order to maintain the analytical properties and  
to minimise the bias of the perturbed microdata set 
as much as possible. Record swapping exchanges 
some of the non-equal variable-values between paired 
individuals/households (Eurostat, 2015, chap. 3.1. I, 
p. 7). The exchanged variables are often geographical 
variables, and in the case of this paper the grids are used.

Random noise, as a post-tabular method,  
is defined by noise probability distributions and by  
a mechanism that draws from the noise distributions. 
The implementation of random noise as outlined below 
may involve three ‘modules’:

• the cell key module,
• the module for determining noise based on cell 

key and the noise distribution parameter matrix,
• the module to restore additivity (Eurostat, 2015, 

chap. 3.1. I, p. 8).
Cell keys should be drawn from a discrete uniform 

distribution defined on some integer values (for 
example, integers between 1 and 100). The process 
that defines the cell keys has to be consistent, i.e.  
it must guarantee that the same cell always gets the 
same key in any hypercube or grid cell or tabulation 
(Eurostat, 2015, chap. 3.1. I, p. 8).

The performance of a random noise method 
can easily be controlled in a flexible way by means 
of parameter settings that define the probability 
distributions. In a typical implementation, the 
following properties will be required and/or controlled 
by the parameters:

• noise expectation/unbiasedness property;
• noise variance;
• the property that certain frequencies  

(e.g. 1s and 2s) should not appear in the 
perturbed data;

Jaroslav Kraus 
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• the property that (structural) zero cells will 
never be perturbed (Eurostat, 2015, chap.  
3.1. I, p. 8).

When consistent cell keys are used then the 
perturbation step leads to consistently perturbed 
data sets. The ptable files for various settings have 
been provided by Eurostat for testing. The settings 
are mainly defined by the maximum perturbation 
parameter D and by the noise variance parameter V. 
The ptable provides lists of every combination of cell 
value and cell key and determines a perturbation value 
for that cell. The ‘p-value’ is added to the original cell 
value, (although most of these changes will be +0)  
to create the final post perturbation cell value 
(Eurostat, 2015, chap. 3.1. I, pp. 8–9).

Cantabular adds noise to tabular outputs, 
using the cell-key method, in the same way as the 
Eurostat methods. Tables are produced dynamically 
from microdata in real-time in response to a user’s 
query and noise is added deterministically based on  
a computed cell-key and a perturbation table. Zeros 
can also be perturbed without affecting any structural 
zeros found in the data for each query.

T h e  m a x i mu m  v a lu e  an d  v ar i an c e  o f 
perturbation applied are completely configurable via 
the use of a perturbation table lookup, so different 
noise distributions can be applied to outputs. In 
addition to cell-key, Cantabular also includes  
a disclosure rules language that allows for the real-
time checking of table outputs for disclosive cells 
and the subsequent suppression of outputs per 
geographic area.

While the Eurostat approach includes a module 
to restore additivity, Cantabular does not, as this  
is not possible with a flexible table builder. This loss of 
additivity can to a small and statistically insignificant 
degree affect the utility of data for users. This can 
be avoided by always querying Cantabular for the 
population counts that are required instead of using 
Cantabular to create multidimensional hypercubes, 
which are then themselves queried.

The benefit of taking this approach is that it allows 
real-time queries for arbitrary cross-tabulations to  
be made. This is also facilitated by the disclosure rules 
language, which allows for tables that are still disclosive 
after the application of cell-key to be automatically 
suppressed (Cantabular, 2021).

INFORMATION LOSS MEASURES
The starting point for measuring the loss of 
information due to the use of SDC is the evaluation 
of frequency tables, i.e. the analysis of the differences 
between the original and the perturbed value. For 
perturbative methods, we typically measure the 
maximas, means, medians, and some percentiles of:

• the absolute differences (AD), 
• the relative differences (RAD) between original 

and altered counts in a table, and
• the (squared) differences of the square roots 

between the original and altered counts. 
Counts may be altered because a perturbative 

protection method has been applied to the data,  
or because of the effect of cell suppression. The most 
straightforward way in which to take suppression into 
account is to impute zeroes for the suppressed count 
(Eurostat, 2015, chap. 3.1. I, p.10).

According to (Domingo-Ferrer et al., 2006, p. 72), 
let Dk represent a row (i.e., a distribution) k in a table, 
and let Dk (c) be the cell frequency c in the row. Let nr 
be the number of rows in the comparison. The absolute 
distance (AD) is then defined as

and the summary statistics per aggregate k mean is 
defined as

The relative absolute distance (RAD) is defined as

and the summary statistics per aggregate k sum is 
defined as

Finally, the difference of the square roots is defined as

and the suggested summary statistics, e.g. Hellinger’s 
distance (HD), is defined as
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which is used to quantify the similarity between two 
probability distributions - a namely the original and 
perturbed datasets. Once these are derived, it is then 
possible to calculate Hellinger’s distance utility (HDU) as

which measures the relative degree of agreement 
between the original and the perturbed dataset  
in the interval (0;1).

For both AD and RAD simple descriptive statistics 
like max, mean, and median, the percentiles p60, 
p70, p80, p90, p95, and p99 would be calculated. 
In addition, the cumulative distribution function 
FRAD(r) proportion of cells with relative absolute 
difference less than (r) could also be calculated. These 
measures are based on the idea that if the synthetic  
and original data are similar, data set membership 
should be indistinguishable between the two data sets.

Another statistical analysis that is frequently 
carr ied  out  on tabular  data  are  tests  for 
independence between categorical variables that 
span a table. The test for independence for a two-
way table is based on a Pearson Chi-Squared 
Statistic (Shlomo, 2006, p. 214). This statistic defined 
for i is from 1 to s and the summation for j is from 
1 to r, is formulated as

where

is the expected value of the frequencies in the i th row 
and j th column.

Measures of association when one or both 
variables are nominally scaled are more difficult 
to define, since you cannot think of association 
in these circumstances as negative or positive in 
any sense. However, indices of association in the 
nominal case have been constructed and most are 
based on mimicking R-squared in some fashion. 

One such measure is the uncertainty coefficient, 
and another is the lambda coefficient (Stokes  
et al., 2012, p. 129).

The asymmetric lambda λ (Columns|Rows) 
is interpreted as the probable improvement in 
predicting the column variable Y (perturbed data) 
given knowledge of the row variable X (original 
data). The range of the asymmetric lambda is  
0 ≤ λ(C|R) ≤ 1. The asymmetric lambda (C|R)  
is computed as

and its asymptotic variance is

The nondirectional lambda (symmetric) is the 
average of the two asymmetric lambdas, (λ(C | R) and 
(λ(R | C). Its range is 0 ≤ λ ≤ 1. The lambda symmetric 
is computed as

and its asymptotic variance is computed as

The uncertainty coefficient U is the symmetric 
version of the two asymmetric uncertainty coefficients. 
Its range is 0 ≤ U ≤ 1. The uncertainty coefficient is 
computed as

U = 2(H(X) + H(Y) – H(XY)) / (H(X) + H(Y))

and its asymptotic variance is

where H(X), H(Y), and H(XY) are defined in 
the previous section. See (SAS Stat, 2021) for the 
completed description.

Jaroslav Kraus 
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For each measure, the asymptotic standard error 
(ASE) has been calculated, which is the square root 
of the asymptotic variance denoted by the variable. 
If the sample size is adequate, then the measure of 
association is approximately normally distributed, 
and the confidence intervals of interest can be 
calculated as

est ± zα/2 · ASE

where est is the estimate of the measure, zα/2 is 
the 100 (1-α/2) percentile of the standard normal 
distribution, and ASE is the asymptotic standard error 
of the estimate (SAS Stat). In this case, 95% confidence 
interval was used.

The Gini index (or Gini ratio) is a measure of 
statistical dispersion and it is the most commonly 
used measurement of inequality preferably used in 
economics. It measures the inequality among values 
of a frequency distribution. An index of zero expresses 
perfect equality, where all the values are the same, and 
an index of 1 (or 100%) expresses maximal inequality 
among the values. The sample Gini coefficient was 
calculated using the formula:

where Xi are the sizes sorted from smallest to largest, 
X1 ≤ X2 ≤ Xn (Dixon, 1987).

FROM GRIDS TO SPATIAL STATISTICS

In the case of grid data, it is also necessary to take into 
account spatial measures, which measure the degree 
of spatial distribution both original and perturbed 
data sets:

• the global autocorrelation rate
• the local autocorrelation rates.
Spatial autocorrelation may be a result of 

unobserved or hard-to-quantify processes, combined 
in various places, and together the causing spatial 
structuring of a given phenomenon. If there is 
a spatial autocorrelation, it is determined by 
examining whether the variable value for a given  
(e.g. geolocalised) observation is associated with 
values of the same variable for neighbouring 

obser vations (INSEE ,  2018,  p.  67).  Spatial 
autocorrelation may be positive or negative or 
there may be no spatial autocorrelation among the 
given data. Spatial autocorrelation can be measured 
globally or locally; both ways assess the same thing 
– i.e. whether there is a spatial correlation of a given 
phenomenon – but they are not the same.

There are different ways of measuring spatial 
autocorrelation; Moran’s I is often used. The 
principle of computation is that it takes into 
account the difference between the value of the 
variable and the average of values of that variable 
for a given area (e.g. neighbourhood). Moran’s 
index is the preferred approach (compared to 
others), because it is more stable against extreme 
values, and it can be used in two ways (see below). 
The index can be written in several ways, but  
it is frequently written as follows:

Null hypothesis H0, states that there is no spatial 
correlation in the given territory. Vice versa, if  
Iw > 0, then there is a positive autocorrelation, which 
means that high values are neighbouring high ones and 
low values are neighbouring low ones. In the case of  
a negative autocorrelation, the reverse would apply. 
Depending on the distribution of a spatial variable, 
the calculation of a median value: neighbour high 
ones and low values neighbour low ones. Depending 
on the distribution of a spatial variable, the calculation 
of a median value is

and the calculation for the testing statistics is

A key element for calculating the indices of spatial 
autocorrelation is to determine the neighbourhood, 
i.e. to select spatial entities that are neighbours by 
definition. In the case of this study, the neighbourhood 
was defined by the edges_corners method, i.e. grids 
that had a common edge or vertex were always taken 
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as neighbours. An explanation of this approach can 
be found in (Kraus, 2019).

The Moran’s index is a global statistic, which 
provides no information about the extent of local 
variation in spatial variability. For that, there are 
tools that enable us to assess the local level of spatial 
autocorrelation (LISA) and to measure the intensity 
and importance of autocorrelation between the value 
of the variable in a spatial unit and the value of the 
same variable in neighbouring spatial units. These 
indicators examine the following two features:

• for each observation they show the intensity of 
the clustering of similar/opposite values around 
that observation;

• the sum of local indices at all observations is 
proportional to the corresponding global index, 
e.g. to global Moran’s I.

In the case of Moran’s I, its local value can  
be written as follows

and the value of the global index is as follows

where:
• Ii > 0 indicates the clustering of similar values 

(higher or lower than the average for a given 
neighbourhood), and

• Ii < 0 indicates the clustering of different values. 
The spatial clustering of similar or different values 

is observed as follows: as High-High values (HH), 
Low-Low values (LL), High-Low values (HL), or 
Low-High (LH) values. If we mean a high value 
surrounded by other high values or a low value 
surrounded by other low values then they are referred 
to as hot spots or cold spots, respectively. If we mean 
a high value surrounded by low values or a low value 
surrounded by high values, then these are spatial 
outliers (Anselin, 1995). The significance of each 
local indicator is based on a spatial distribution of 
data and statistics that is asymptotically approaching 
the normal distribution:

Since the global rate of spatial autocorrelation 
(Moran’s I) proved to be distinctively higher in 
the case where the neighbouring municipalities 
method is used, local rates of Moran’s I were further 
computed only for this method of neighbourhood 
determination.

RESULTS

A relat ively simple model was chosen for 
the calculation (it is a test), where the output  
(i.e. perturbed) variable is the number of people who 
are usually living according to the grid network. This 
total is information that can be published without 
restriction. The constraint occurs when it needs to 
be published in combination with another variable or 
variables. For the purpose of this test, two variables 
that enter perturbation were selected: sex and age. 
As the combination of age, sex, and individual grid 
units would create too low a frequency, age was 
transcoded into ten-year groups in line with Eurostat's 
recommendation: the output is the number of usually 
living by sex, age, ten-year age groups, and grids. These 
combinations were then aggregated again into the 
number usually living according to the grid network 
and the result was evaluated.

According to the Eurostat methodology, two 
variants were calculated, which differ by setting 
the parameters maximum noise D and variance of 
noise V. D = 3 and V = 1 are settings recommended 
on the basis of Eurostat testing. Furthermore, in 
accordance with the Eurostat methodology, version 
4 was calculated with values D = 2 and V = 1,  
i.e. with a lower level of perturbation parameter D 
but with the same level of noise variance V. Another 
option is to keep zero values, i.e. grids with a zero 
number of habitual residents. They are not subject 
to perturbations.

Cantabular was configured with a perturbation 
table designed to replicate Eurostat variant 1, but with 
a reduced cell-key range, compatible with Cantabular. 
It had a maximum absolute perturbation parameter 
D of 3 and a noise variance V of approximately  
1 (Cantabular, 2021).

Recommended statistics were calculated for the 
difference in the number of usually living between 
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the original and the perturbed value according  
to the grid network.

The result of the absolute difference (AD) shows 
that there is a clear difference between the results 
according to the Eurostat and Cantabular method 
in the case of maximum, mean and variance. This 
difference is not so significant for the median and 
lower percentiles.

The higher maximum value for absolute difference 
shown in the table above for Cantabular is caused by  
a query being run at a high level of detail – age by sex 
by grid square – before the results are then added up  
at a lower level of detail – total population by 
grid square – for a comparison with the original 
unperturbed data.

This has the effect of compounding perturbation 
because of the loss of additivity in the marginal totals 
that is inherent in the cell-key method. If the initial 
query was done at total population by grid square, 
the maximum absolute difference would be 3, as set 

in the perturbation configuration. As discussed above, 
Cantabular does not attempt to restore additivity in 
order to provide a larger, more flexible range of outputs 
(Cantabular, 2021).

The cumulative distribution function  FAD 
(proportion of cells with an absolute difference less 
than d was calculated for = 1 to 15. While in the case 
of results according to the Eurostat methodology there 
was a complete enumeration in variant 1 for CDF = 3  
and in the case of variant 4 even for CDF = 2, the 
results according to the Cantabular methodology 
show a gradual and uniform increase in frequencies 
up to value 15. This follows from a previous finding 
of a maximum of AD, which was for Eurostat variants 
2 and 3, while for Cantabular was 49.

However, in the case of the relative absolute 
difference (RAD), the differences between the 
Eurostat and Cantabular methodologies are 
blurred. The maximum RAD reaches the value 3 
for both variant 1 of the Eurostat methodology 

Table 1  Simple descriptive statistics for absolute difference (AD) - Eurostat solution

Variant 1

Maximum Mean Median 60th pctl 70th pctl 80th pctl 90th pctl 95th pctl 99th pctl Variance

3 0.41 0 0 1 1 1 2 2 0.39

Variant 4

2 0.49 0 1 1 1 1 2 2 0.42

Source: Author’s calculation.

Table 3  Cumulative distribution function (CDF) for absolute difference – Eurostat solution

Variant 1 Variant 4

CDF Frequency Percent Cumulative
frequency

Cumulative
percent CDF Frequency Percent Cumulative

frequency
Cumulative

percent

0 42,100 65.67 42,100 65.67 0 38,158 59.53 38,158 59.53

1 18,074 28.19 60,174 93.87 1 20,546 32.05 58,704 91.58

2 3,575 5.58 63,749 99.45 2 5,400 8.42 64,104 100.00

3 355 0.55 64,104 100.00

Source: Author’s calculation.

Table 2  Simple descriptive statistics for absolute difference (AD) - Cantabular solution

Variant 1

Maximum Mean Median 60th pctl 70th pctl 80th pctl 90th pctl 95th pctl 99th pctl Variance

49 2.82 0 1 3 5 9 13 22 23.05

Source: Author’s calculation.
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and the Cantabular methodology. Similarly, both 
methodologies yield completely comparable values 
for both the mean and the percentile values. This is 
because the denominator of the indicator contains the 
numbers of original values, so that even in the case of 
differences between the original and the perturbed value 
of higher frequencies, the relative differences decrease.

The CDF results for variable RAD show that a higher 
degree of agreement between the original and the 

perturbed value exists at lower CDF_RAD levels for 
the Eurostat method, but with increasing value the 
situation rotates and for 0.50 the Cantabular method 
contains 93 percent of all (cumulative values) and 
while for 0.50 Eurostat methods 1 and 4 contain, 
respectively, 88 and 85 percent. The results are 
therefore similar.

The relative Hellinger distance (HDutility) again 
shows that both methods yield completely comparable 

Table 4  Cumulative distribution function (CDF) for absolute difference – Cantabular solution

Variant 1

CDF Frequency Percent Cumulative frequency Cumulative percent

0 40,427 50.45 40,427 50.45

1 8,345 10.41 48,772 60.57

2 6,028 7.52 54,800 68.39

3 4,504 5.62 59,304 74.01

4 3,501 4.37 62,805 78.38

5 2,786 3.48 65,591 81.86

6 2,249 2.81 67,840 84.66

7 1,856 2.32 69,696 86.98

8 1,621 2.02 71,317 89.00

9 1,369 1.71 72,686 90.71

10 1,120 1.40 73,806 92.11

11 985 1.23 74,791 93.34

12 856 1.07 75,647 94.41

13 692 0.86 76,339 95.27

14 654 0.82 76,993 96.09

15 3,136 3.91 80,129 100.00

Source: Author’s calculation.

Table 5  Simple descriptive statistics for relative absolute difference – Eurostat solution

Variant 1

Maximum Mean Median 60th pctl 70th pctl 80th pctl 90th pctl 95th pctl 99th pctl Variance

3 0.28 0.06 0.14 0.29 0.50 1.00 1.00 2.00 0.39

Variant 4

2 0.35 0.11 0.22 0.50 1.00 1.00 1.00 2.00 0.42

Source: Author’s calculation.

Table 6  Simple descriptive statistics for relative absolute difference – Cantabular solution

Variant 1

Maximum Mean Median 60th pctl 70th pctl 80th pctl 90th pctl 95th pctl 99th pctl Variance

3 0.19 0.08 0.12 0.18 0.29 0.50 0.86 1.00 23.05

Source: Author’s calculation.
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Table 7  Cumulative distribution function (CDF) for relative absolute difference (RAD) – Eurostat solution

Variant 1 Variant 4

CDF_RAD Frequency Percent Cumulative
frequency

Cumulative
percent CDF_RAD Frequency Percent Cumulative

frequency
Cumulative

percent

0.02 43,422 67.74 43,422 67.74 0.02 41,238 64.33 41,238 64.33

0.05 2,334 3.64 45,756 71.38 0.05 2,304 3.59 43,542 67.92

0.10 3,028 4.72 48,784 76.10 0.10 3,087 4.82 46,629 72.74

0.20 3,391 5.29 52,175 81.39 0.20 3,563 5.56 50,192 78.30

0.30 2,379 3.71 54,554 85.10 0.30 2,428 3.79 52,620 82.09

0.40 1,508 2.35 56,062 87.45 0.40 1,573 2.45 54,193 84.54

0.50 206 0.32 56,268 87.78 0.50 225 0.35 54,418 84.89

0.99 2,547 3.97 58,815 91.75 0.99 2,568 4.01 56,986 88.90

1.00 5,289 8.25 64,104 100.00 1.00 7,118 11.10 64,104 100.00

Source: Author’s calculation.

Table 8  Cumulative distribution function (CDF) for relative absolute difference (RAD) – Cantabular solution

Variant 1

CDF_RAD Frequency Percent Cumulative frequency Cumulative percent

0.02 47,077 58.75 47,077 58.75

0.05 6,623 8.27 53,700 67.02

0.10 6,753 8.43 60,453 75.44

0.20 7,021 8.76 67,474 84.21

0.30 4,049 5.05 71,523 89.26

0.40 2,178 2.72 73,701 91.98

0.50 1,029 1.28 74,730 93.26

0.99 3,207 4.00 77,937 97.26

1.00 2,192 2.74 80,129 100.00

Source: Author’s calculation.

Table 9  Hellinger distance (HD) and related utility measures – Eurostat solution

HD HDutility Max difference Mean Abs Difference rootMeanSquare

Version 1

212.13 0.93 3.00 0.34 0.68

Version 4

294.33 0.91 2.00 0.41 0.74

Source: Author’s calculation.

Table 10  Hellinger distance (HD) and related utility measures – Cantabular solution

HD HDutility Max difference Mean Abs Difference rootMeanSquare

Version 1

69.53 0.98 49 2.82 5.57

Source: Author’s calculation.
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results. For the Eurostat method, this agreement  
is at the level of 0.93, resp. 0.91 and in the case of the 
Cantabular method even 0.98. This indicates that there 
are no statistically significant differences between the 
original and the perturbed values.

All of the measures of ordinal association indicate  
a positive association. The resulting association rates 
are comparable for all three methods and the ASE 
value indicates that they are statistically significant. 
Slightly higher values obtained by the Cantabular 
method suggest in favour of this method of data 
perturbation.

Gini's concentration coefficient is used in 
geographic surveys because it overcomes the 
deficiencies of the coefficient of variation depending 

on the average and is therefore more appropriate for 
affecting the variability of asymmetric distributions 
typical of socio-geographical phenomena (Netrdová 
et al., 2012). An interesting comparison is the one 
with the result of the GINI index calculation between 
the original data and the perturbed data. The results 
show that the value of the Gini index expresses high 
inequality among values, but at approximately the 
same level for the original and the perturbed data.

Previous results showed a statistical evaluation of 
the results, without questioning whether the original 
and perturbed values are somehow differently 
distributed in space. The answer to this question 
is given by the global and local measures of spatial 
autocorrelation.

Table 11  Measures of association between original and perturbed data

Statistic
Eurostat – version 1 Eurostat – version 4 Cantabular

Value ASE 95% Confidence 
limits Value ASE 95% Confidence 

limits Value ASE 95% Confidence 
limits

Pearson correlation 
(Rank Scores)

0.730 0.001 0.728 0.731 0.730 0.001 0.729 0.731 0.955 0.000 0.954 0.956

Lambda asymmetric 
C|R

0.329 0.001 0.327 0.330 0.288 0.001 0.286 0.289 0.155 0.002 0.152 0.159

Lambda asymmetric 
R|C

0.393 0.001 0.392 0.394 0.268 0.001 0.267 0.269 0.176 0.002 0.173 0.180

Lambda symmetric 0.362 0.001 0.361 0.364 0.277 0.001 0.276 0.279 0.166 0.002 0.163 0.169

Uncertainty 
coefficient C|R

0.701 0.000 0.701 0.702 0.650 0.000 0.649 0.650 0.628 0.001 0.626 0.630

Source: Author’s calculation.
C|R – columns|rows, ASE - asymptotic standard errors (Stokes et al., 2012, p. 125).

Table 12  Gini coefficient for original and perturbed data

Gini coefficient
Original data

Eurostat – version 1 Eurostat – version 4 Cantabular
perturbed dataPerturbed data Perturbed data

0.893 0.895 0.895 0.900

Source: Author’s calculation.
C|R – columns|rows, ASE - asymptotic standard errors (Stokes et al., 2012, p. 125).

Table 13  Global Moran’s I summary for original and perturbed data

Original data
Eurostat Cantabular

variant Variant 1 Variant 4

Moran's Index 0.493 0.493 0.492 0.496

Variance 0.000 0.000 0.000 0.000

z-score 277.8 277.8 277.8 280.5

p-value 0.0 0.0 0.0 0.0

Source: Author’s calculation.

Jaroslav Kraus 
Statistical Disclosure Control Methods for Harmonised Protection of Census Data: a Grid Case



212

2021 63 (4) ARTICLES

Figure 2  Typology of grids according to the difference between the original and the perturbed value  
calculated according to Eurostat methodology (local Moran’s I)

Figure 3  Typology of grids according to the difference between the original and perturbed values  
calculated according to the Cantabular methodology (local Moran’s I)

Source: Author calculation

Source: Author calculation
Note: The above cartograms show that perturbation does not lead to a change in the spatial structure of the observed phenomenon, which in this case  
 is the number of usually living in the individual grids. If there was a change, then the dominant (not significant) value, marked in green, would  
 be replaced in larger areas (i.e. groups of grids) by a different colour than, and thus the structure would be disrupted. 
 Because this is not the perturbed value of the number of usually living by grids, the derived structures used in this model case (five-year  
 age structures, sex) are guaranteed to yield consistent results (i.e. compared to the original values).
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Moran's I  calculation was based on the 
neighbourhood defined by the Edges Corners method, 
meaning that neighbours are those grids that have 
either an edge or a corner in common. The results 
show that the value of the index is practically the 
same for the original and perturbed data calculated by 
both the Eurostat and Cantabular methods and differs 
only to the third decimal place. Given the p-value, 
the pattern appears to be significantly different from 
random, and the z-score indicates that all models are 
very similar.

The local level of spatial autocorrelation 
(LISA) indicates the local values of Moran’s I. This 
indicator was calculated for the difference between 
the original and the perturbed value of each grid. 
From Figures 2 and 3 it is evident that the type Not 
Significant (the bright green colour) predominates, 
i.e. perturbation is also a spatially random process 
that does not change the spatial distribution  
of usually living.

CONCLUSION

The 2011 Population and Housing Census in the Czech 
Republic was accompanied by a significant change 
in the technology used to prepare the census and in 
the actual course of fieldwork, along with changes  
in how the data were processed and the outputs were 
disseminated. Some methodological approaches  
to processing the data have also changed and are now 
more aligned with international recommendations. 
Although a number of changes have been relatively 
widely discussed in the literature, one type of output 
remains somewhat overlooked: census results  
in a grid network.

Working with a network of grids has both 
advantages and disadvantages, but the main 
disadvantage is that grids are small territorial units 
that are often minimally populated. This is mainly 
a problem in terms of the protection of individual 
data, which is associated with statistical disclosure 
control (SDC).

The research question addressed in this paper  
is whether data protection (perturbation methods) 
leads to a change in the characteristics of the file either 
in terms of the statistics of the whole file (i.e. for all 

grids) or in terms of spatial statistics, which indicate 
the spatial distribution of the analysed phenomenon.

Two possible solutions to the issue of grid data 
protection were examined. One comes from the 
Statistical Office of the European Communities 
(Eurostat) and the other from Cantabular, which  
is a product of the Belfast company Sensibile Code Ltd.

In both cases, the data protection solutions are 
described. One possible solution is to add noise  
to tabular outputs, using the cell-key method. Tables 
are produced dynamically from microdata in real-
time in response to a user’s query and noise is added 
deterministically based on a computed cell-key and 
a perturbation table. Zeros can also be perturbed 
without affecting any structural zeros found in the 
data for each query.

The starting point for measuring the loss of 
information due to the use of SDC is the evaluation 
of frequency tables, i.e. the analysis of the differences 
between the original and the perturbed value. For 
perturbative methods, measures of the maximas, 
means, medians, and some percentiles of absolute 
differences (AD) and relative differences (RAD) 
between the original and altered counts in a table and 
the (squared) differences of the square roots between 
original and altered counts were calculated.

However, in the case of grids, it was also necessary 
to focus on spatial measures, which measure the degree 
of spatial distribution of both the original and the 
perturbed data sets, e.g. the global autocorrelation 
rate and the local autocorrelation rates.

The results are based on a relatively simple model 
for the calculation, where the output (i.e. perturbed) 
variable is the number of people usually living 
according to the grid network. The constraint occurs 
when it should be published in combination with 
another variable or variables. For the purpose of 
this test, two variables that enter perturbation were 
selected: sex and age. As the combination of age, 
sex, and individual grid units would create too low  
a frequency, age was transcoded into ten-year groups in 
line with Eurostat's recommendation: the output is the 
numbers usually living by sex, age, ten-year age groups, 
and grids. These combinations were then aggregated 
again into the number usually living according to the 
grid network and the result was evaluated.
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According to the Eurostat methodology, two 
variants were calculated, which differ by the 
parameters set for maximum noise D and the variance 
of noise V. Another option is to keep zero values, 
i.e. grids with a zero number of habitual residents. 
They are not subject to perturbations. Cantabular 
was configured with a perturbation table designed to 
replicate Eurostat variant 1, but with a reduced cell-
key range compatible with Cantabular.

The results of the descriptive statistics show  
a difference in the absolute differences compared with 

the Eurostat methodology, and Cantabular explains 
the different way of processing microdata. In the case 
of other statistics, the results are fully comparable.

This paper is devoted to one specific type of census 
output. The question is to what extent these results are 
relevant for other types of outputs and in particular for 
outputs in hypercubes. They differ fundamentally in 
terms of the number of dimensions (grids have only 
two dimensions). It would therefore be appropriate 
to use SDC procedures that allow greater flexibility 
in defining SDC parameters.
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